(***** This file provides a generalized version of arithmetic with "mixed radix" numerical systems. Later, parameters are entered into the general functions, and they are partially evaluated until only runtime basic arithmetic operations remain. CPS --- Fuctions are written in continuation passing style (CPS). This means that each operation is passed a "continuation" function, which it is expected to call on its own output (like a callback). See the end of this comment for a motivating example explaining why we do CPS, despite a fair amount of resulting boilerplate code for each operation. The code block for an operation called A would look like this: ``` Definition A_cps x y {T} f : T := ... Definition A x y := A_cps x y id. Lemma A_cps_id x y : forall {T} f, @A_cps x y T f = f (A x y). Hint Opaque A : uncps. Hint Rewrite A_cps_id : uncps. Lemma eval_A x y : eval (A x y) = ... Hint Rewrite eval_A : push_basesystem_eval. ``` `A_cps` is the main, CPS-style definition of the operation (`f` is the continuation function). `A` is the non-CPS version of `A_cps`, simply defined by passing an identity function to `A_cps`. `A_cps_id` states that we can replace the CPS version with the non-cps version. `eval_A` is the actual correctness lemma for the operation, stating that it has the correct arithmetic properties. In general, the middle block containing `A` and `A_cps_id` is boring boilerplate and can be safely ignored. HintDbs ------- + `uncps` : Converts CPS operations to their non-CPS versions. + `push_basesystem_eval` : Contains all the correctness lemmas for operations in this file, which are in terms of the `eval` function. Positional/Associational ------------------------ We represent mixed-radix numbers in a few different ways: + "Positional" : a tuple of numbers and a weight function (nat->Z), which is evaluated by multiplying the `i`th element of the tuple by `weight i`, and then summing the products. + "Associational" : a list of pairs of numbers--the first is the weight, the second is the runtime value. Evaluated by multiplying each pair and summing the products. The associational representation is good for basic operations like addition and multiplication; for addition, one can simply just append two associational lists. But the end-result code should use the positional representation (with each digit representing a machine word). Since converting to and fro can be easily compiled away once the weight function is known, we use associational to write most of the operations and liberally convert back and forth to ensure correct output. In particular, it is important to convert before carrying. Runtime Operations ------------------ Since some instances of e.g. Z.add or Z.mul operate on (compile-time) weights, and some operate on runtime values, we need a way to differentiate these cases before partial evaluation. We define a runtime_scope to mark certain additions/multiplications as runtime values, so they will not be unfolded during partial evaluation. For instance, if we have: ``` Definition f (x y : Z * Z) := (fst x + fst y, (snd x + snd y)%RT). ``` then when we are partially evaluating `f`, we can easily exclude the runtime operations (`cbv - [runtime_add]`) and prevent Coq from trying to simplify the second addition. Why CPS? -------- Let's suppose we want to add corresponding elements of two `list Z`s (so on inputs `[1,2,3]` and `[2,3,1]`, we get `[3,5,4]`). We might write our function like this : ``` Fixpoint add_lists (p q : list Z) := match p, q with | p0 :: p', q0 :: q' => dlet sum := p0 + q0 in sum :: add_lists p' q' | _, _ => nil end. ``` (Note : `dlet` is a notation for `Let_In`, which is just a dumb wrapper for `let`. This allows us to `cbv - [Let_In]` if we want to not simplify certain `let`s.) A CPS equivalent of `add_lists` would look like this: ``` Fixpoint add_lists_cps (p q : list Z) {T} (f:list Z->T) := match p, q with | p0 :: p', q0 :: q' => dlet sum := p0 + q0 in add_lists_cps p' q' (fun r => f (sum :: r)) | _, _ => f nil end. ``` Now let's try some partial evaluation. The expression we'll evaluate is: ``` Definition x := (fun a0 a1 a2 b0 b1 b2 => let r := add_lists [a0;a1;a2] [b0;b1;b2] in let rr := add_lists r r in add_lists rr rr). ``` Or, using `add_lists_cps`: ``` Definition y := (fun a0 a1 a2 b0 b1 b2 => add_lists_cps [a0;a1;a2] [b0;b1;b2] (fun r => add_lists_cps r r (fun rr => add_lists_cps rr rr id))). ``` If we run `Eval cbv -[Z.add] in x` and `Eval cbv -[Z.add] in y`, we get identical output: ``` fun a0 a1 a2 b0 b1 b2 : Z => [a0 + b0 + (a0 + b0) + (a0 + b0 + (a0 + b0)); a1 + b1 + (a1 + b1) + (a1 + b1 + (a1 + b1)); a2 + b2 + (a2 + b2) + (a2 + b2 + (a2 + b2))] ``` However, there are a lot of common subexpressions here--this is what the `dlet` we put into the functions should help us avoid. Let's try `Eval cbv -[Let_In Z.add] in x`: ``` fun a0 a1 a2 b0 b1 b2 : Z => (fix add_lists (p q : list Z) {struct p} : list Z := match p with | [] => [] | p0 :: p' => match q with | [] => [] | q0 :: q' => dlet sum := p0 + q0 in sum :: add_lists p' q' end end) ((fix add_lists (p q : list Z) {struct p} : list Z := match p with | [] => [] | p0 :: p' => match q with | [] => [] | q0 :: q' => dlet sum := p0 + q0 in sum :: add_lists p' q' end end) (dlet sum := a0 + b0 in sum :: (dlet sum0 := a1 + b1 in sum0 :: (dlet sum1 := a2 + b2 in [sum1]))) (dlet sum := a0 + b0 in sum :: (dlet sum0 := a1 + b1 in sum0 :: (dlet sum1 := a2 + b2 in [sum1])))) ((fix add_lists (p q : list Z) {struct p} : list Z := match p with | [] => [] | p0 :: p' => match q with | [] => [] | q0 :: q' => dlet sum := p0 + q0 in sum :: add_lists p' q' end end) (dlet sum := a0 + b0 in sum :: (dlet sum0 := a1 + b1 in sum0 :: (dlet sum1 := a2 + b2 in [sum1]))) (dlet sum := a0 + b0 in sum :: (dlet sum0 := a1 + b1 in sum0 :: (dlet sum1 := a2 + b2 in [sum1])))) ``` Not so great. Because the `dlet`s are stuck in the inner terms, we can't simplify the expression very nicely. Let's try that on the CPS version (`Eval cbv -[Let_In Z.add] in y`): ``` fun a0 a1 a2 b0 b1 b2 : Z => dlet sum := a0 + b0 in dlet sum0 := a1 + b1 in dlet sum1 := a2 + b2 in dlet sum2 := sum + sum in dlet sum3 := sum0 + sum0 in dlet sum4 := sum1 + sum1 in dlet sum5 := sum2 + sum2 in dlet sum6 := sum3 + sum3 in dlet sum7 := sum4 + sum4 in [sum5; sum6; sum7] ``` Isn't that lovely? Since we can push continuation functions "under" the `dlet`s, we can end up with a nice, concise, simplified expression. One might suggest that we could just inline the `dlet`s and do common subexpression elimination. But some of our terms have so many `dlet`s that inlining them all would make a term too huge to process in reasonable time, so this is not really an option. *****) Require Import Coq.ZArith.ZArith Coq.micromega.Psatz Coq.omega.Omega. Require Import Coq.ZArith.BinIntDef. Local Open Scope Z_scope. Require Import Crypto.Tactics.Algebra_syntax.Nsatz. Require Import Crypto.Util.Tactics Crypto.Util.Decidable Crypto.Util.LetIn. Require Import Crypto.Util.ZUtil Crypto.Util.ListUtil Crypto.Util.Sigma. Require Import Crypto.Util.CPSUtil Crypto.Util.Prod Crypto.Util.Tactics. Require Import Crypto.ModularArithmetic.PrimeFieldTheorems. Require Import Coq.Lists.List. Import ListNotations. Require Crypto.Util.Tuple. Local Notation tuple := Tuple.tuple. Local Ltac prove_id := repeat match goal with | _ => progress intros | _ => progress simpl | _ => progress cbv [Let_In] | _ => progress (autorewrite with uncps push_id in * ) | _ => break_if | _ => break_match | _ => contradiction | _ => reflexivity | _ => nsatz | _ => solve [auto] end. Create HintDb push_basesystem_eval discriminated. Local Ltac prove_eval := repeat match goal with | _ => progress intros | _ => progress simpl | _ => progress cbv [Let_In] | _ => progress (autorewrite with push_basesystem_eval uncps push_id cancel_pair in * ) | _ => break_if | _ => break_match | _ => split | H : _ /\ _ |- _ => destruct H | H : Some _ = Some _ |- _ => progress (inversion H; subst) | _ => discriminate | _ => reflexivity | _ => nsatz end. Definition mod_eq (m:positive) a b := a mod m = b mod m. Global Instance mod_eq_equiv m : RelationClasses.Equivalence (mod_eq m). Proof. constructor; congruence. Qed. Definition mod_eq_dec m a b : {mod_eq m a b} + {~ mod_eq m a b} := Z.eq_dec _ _. Lemma mod_eq_Z2F_iff m a b : mod_eq m a b <-> Logic.eq (F.of_Z m a) (F.of_Z m b). Proof. rewrite <-F.eq_of_Z_iff; reflexivity. Qed. Delimit Scope runtime_scope with RT. Definition runtime_mul := Z.mul. Global Notation "a * b" := (runtime_mul a%RT b%RT) : runtime_scope. Definition runtime_add := Z.add. Global Notation "a + b" := (runtime_add a%RT b%RT) : runtime_scope. Definition runtime_opp := Z.opp. Global Notation "- a" := (runtime_opp a%RT) : runtime_scope. Definition runtime_and := Z.land. Global Notation "a &' b" := (runtime_and a%RT b%RT) : runtime_scope. Definition runtime_shr := Z.shiftr. Global Notation "a >> b" := (runtime_shr a%RT b%RT) : runtime_scope. Module B. Definition limb := (Z*Z)%type. (* position coefficient and run-time value *) Module Associational. Definition eval (p:list limb) : Z := List.fold_right Z.add 0%Z (List.map (fun t => fst t * snd t) p). Lemma eval_nil : eval nil = 0. Proof. reflexivity. Qed. Lemma eval_cons p q : eval (p::q) = (fst p) * (snd p) + eval q. Proof. reflexivity. Qed. Lemma eval_app p q: eval (p++q) = eval p + eval q. Proof. induction p; simpl eval; rewrite ?eval_nil, ?eval_cons; nsatz. Qed. Hint Rewrite eval_nil eval_cons eval_app : push_basesystem_eval. Definition multerm (t t' : limb) : limb := (fst t * fst t', (snd t * snd t')%RT). Lemma eval_map_multerm (a:limb) (q:list limb) : eval (List.map (multerm a) q) = fst a * snd a * eval q. Proof. induction q; cbv [multerm]; simpl List.map; autorewrite with push_basesystem_eval cancel_pair; nsatz. Qed. Hint Rewrite eval_map_multerm : push_basesystem_eval. Definition mul_cps (p q:list limb) {T} (f : list limb->T) := flat_map_cps (fun t => @map_cps _ _ (multerm t) q) p f. Definition mul (p q:list limb) := mul_cps p q id. Lemma mul_cps_id p q: forall {T} f, @mul_cps p q T f = f (mul p q). Proof. cbv [mul_cps mul]; prove_id. Qed. Hint Opaque mul : uncps. Hint Rewrite mul_cps_id : uncps. Lemma eval_mul p q: eval (mul p q) = eval p * eval q. Proof. cbv [mul mul_cps]; induction p; prove_eval. Qed. Hint Rewrite eval_mul : push_basesystem_eval. Fixpoint split_cps (s:Z) (xs:list limb) {T} (f :list limb*list limb->T) := match xs with | nil => f (nil, nil) | cons x xs' => split_cps s xs' (fun sxs' => if dec (fst x mod s = 0) then f (fst sxs', cons (fst x / s, snd x) (snd sxs')) else f (cons x (fst sxs'), snd sxs')) end. Definition split s xs := split_cps s xs id. Lemma split_cps_id s p: forall {T} f, @split_cps s p T f = f (split s p). Proof. induction p; repeat match goal with | _ => rewrite IHp | _ => progress (cbv [split]; prove_id) end. Qed. Hint Opaque split : uncps. Hint Rewrite split_cps_id : uncps. Lemma eval_split s p (s_nonzero:s<>0): eval (fst (split s p)) + s*eval (snd (split s p)) = eval p. Proof. cbv [split]; induction p; prove_eval. match goal with H:_ |- _ => unique pose proof (Z_div_exact_full_2 _ _ s_nonzero H) end; nsatz. Qed. Hint Rewrite @eval_split using auto : push_basesystem_eval. Definition reduce_cps (s:Z) (c:list limb) (p:list limb) {T} (f : list limb->T) := split_cps s p (fun ab => mul_cps c (snd ab) (fun rr =>f (fst ab ++ rr))). Definition reduce s c p := reduce_cps s c p id. Lemma reduce_cps_id s c p {T} f: @reduce_cps s c p T f = f (reduce s c p). Proof. cbv [reduce_cps reduce]; prove_id. Qed. Hint Opaque reduce : uncps. Hint Rewrite reduce_cps_id : uncps. Lemma reduction_rule a b s c m (m_eq:Z.pos m = s - c): (a + s * b) mod m = (a + c * b) mod m. Proof. rewrite m_eq. pose proof (Pos2Z.is_pos m). replace (a + s * b) with ((a + c*b) + b*(s-c)) by ring. rewrite Z.add_mod, Z_mod_mult, Z.add_0_r, Z.mod_mod by omega. trivial. Qed. Lemma eval_reduce s c p (s_nonzero:s<>0) m (m_eq : Z.pos m = s - eval c) : mod_eq m (eval (reduce s c p)) (eval p). Proof. cbv [reduce reduce_cps mod_eq]; prove_eval. erewrite <-reduction_rule by eauto; prove_eval. Qed. Hint Rewrite eval_reduce using (omega || assumption) : push_basesystem_eval. (* Why TF does this hint get picked up outside the section (while other eval_ hints do not?) *) Definition negate_snd_cps (p:list limb) {T} (f:list limb ->T) := map_cps (fun cx => (fst cx, (-snd cx)%RT)) p f. Definition negate_snd p := negate_snd_cps p id. Lemma negate_snd_id p {T} f : @negate_snd_cps p T f = f (negate_snd p). Proof. cbv [negate_snd_cps negate_snd]; prove_id. Qed. Hint Opaque negate_snd : uncps. Hint Rewrite negate_snd_id : uncps. Lemma eval_negate_snd p : eval (negate_snd p) = - eval p. Proof. cbv [negate_snd_cps negate_snd]; induction p; prove_eval. Qed. Hint Rewrite eval_negate_snd : push_basesystem_eval. Section Carries. Context {modulo div:Z->Z->Z}. Context {div_mod : forall a b:Z, b <> 0 -> a = b * (div a b) + modulo a b}. Definition carryterm_cps (w fw:Z) (t:limb) {T} (f:list limb->T) := if dec (fst t = w) then dlet t2 := snd t in f ((w*fw, div t2 fw) :: (w, modulo t2 fw) :: @nil limb) else f [t]. Definition carryterm w fw t := carryterm_cps w fw t id. Lemma carryterm_cps_id w fw t {T} f : @carryterm_cps w fw t T f = f (@carryterm w fw t). Proof. cbv [carryterm_cps carryterm Let_In]; prove_id. Qed. Hint Opaque carryterm : uncps. Hint Rewrite carryterm_cps_id : uncps. Lemma eval_carryterm w fw (t:limb) (fw_nonzero:fw<>0): eval (carryterm w fw t) = eval [t]. Proof. cbv [carryterm_cps carryterm Let_In]; prove_eval. specialize (div_mod (snd t) fw fw_nonzero). nsatz. Qed. Hint Rewrite eval_carryterm using auto : push_basesystem_eval. Definition carry_cps (w fw:Z) (p:list limb) {T} (f:list limb->T) := flat_map_cps (carryterm_cps w fw) p f. Definition carry w fw p := carry_cps w fw p id. Lemma carry_cps_id w fw p {T} f: @carry_cps w fw p T f = f (carry w fw p). Proof. cbv [carry_cps carry]; prove_id. Qed. Hint Opaque carry : uncps. Hint Rewrite carry_cps_id : uncps. Lemma eval_carry w fw p (fw_nonzero:fw<>0): eval (carry w fw p) = eval p. Proof. cbv [carry_cps carry]; induction p; prove_eval. Qed. Hint Rewrite eval_carry using auto : push_basesystem_eval. End Carries. End Associational. Hint Rewrite @Associational.carry_cps_id @Associational.carryterm_cps_id @Associational.reduce_cps_id @Associational.split_cps_id @Associational.mul_cps_id : uncps. Module Positional. Section Positional. Import Associational. Context (weight : nat -> Z) (* [weight i] is the weight of position [i] *) (weight_0 : weight 0%nat = 1%Z) (weight_nonzero : forall i, weight i <> 0). (** Converting from positional to associational *) Definition to_associational_cps {n:nat} (xs:tuple Z n) {T} (f:list limb->T) := map_cps weight (seq 0 n) (fun r => to_list_cps n xs (fun rr => combine_cps r rr f)). Definition to_associational {n} xs := @to_associational_cps n xs _ id. Lemma to_associational_cps_id {n} x {T} f: @to_associational_cps n x T f = f (to_associational x). Proof. cbv [to_associational_cps to_associational]; prove_id. Qed. Hint Opaque to_associational : uncps. Hint Rewrite @to_associational_cps_id : uncps. Definition eval {n} x := @to_associational_cps n x _ Associational.eval. Lemma eval_to_associational {n} x : Associational.eval (@to_associational n x) = eval x. Proof. cbv [to_associational_cps eval to_associational]; prove_eval. Qed. Hint Rewrite @eval_to_associational : push_basesystem_eval. (** (modular) equality that tolerates redundancy **) Definition eq {sz} m (a b : tuple Z sz) : Prop := mod_eq m (eval a) (eval b). (** Converting from associational to positional *) Definition zeros n : tuple Z n := Tuple.repeat 0 n. Lemma eval_zeros n : eval (zeros n) = 0. Proof. cbv [eval Associational.eval to_associational_cps zeros]. pose proof (seq_length n 0). generalize dependent (seq 0 n). intro xs; revert n; induction xs; intros; [autorewrite with uncps; reflexivity|]. intros; destruct n; [distr_length|]. specialize (IHxs n). autorewrite with uncps in *. rewrite !@Tuple.to_list_repeat in *. simpl List.repeat. rewrite map_cons, combine_cons, map_cons. simpl fold_right. rewrite IHxs by distr_length. ring. Qed. Hint Rewrite eval_zeros : push_basesystem_eval. Definition add_to_nth_cps {n} i x t {T} (f:tuple Z n->T) := @on_tuple_cps _ _ 0 (update_nth_cps i (runtime_add x)) n n t _ f. Definition add_to_nth {n} i x t := @add_to_nth_cps n i x t _ id. Lemma add_to_nth_cps_id {n} i x xs {T} f: @add_to_nth_cps n i x xs T f = f (add_to_nth i x xs). Proof. cbv [add_to_nth_cps add_to_nth]; erewrite !on_tuple_cps_correct by (intros; autorewrite with uncps; reflexivity); prove_id. Unshelve. intros; subst. autorewrite with uncps push_id. distr_length. Qed. Hint Opaque add_to_nth : uncps. Hint Rewrite @add_to_nth_cps_id : uncps. Lemma eval_add_to_nth {n} (i:nat) (x:Z) (H:(i progress (apply Zminus_eq; ring_simplify) | _ => progress autorewrite with push_basesystem_eval cancel_pair distr_length | _ => progress rewrite <-?ListUtil.map_nth_default_always, ?map_fst_combine, ?List.firstn_all2, ?ListUtil.map_nth_default_always, ?nth_default_seq_inbouns, ?plus_O_n end; trivial; lia. Unshelve. intros; subst. autorewrite with uncps push_id. distr_length. Qed. Hint Rewrite @eval_add_to_nth using omega : push_basesystem_eval. Fixpoint place_cps (t:limb) (i:nat) {T} (f:nat * Z->T) := if dec (fst t mod weight i = 0) then f (i, let c := fst t / weight i in (c * snd t)%RT) else match i with S i' => place_cps t i' f | O => f (O, fst t * snd t)%RT end. Definition place t i := place_cps t i id. Lemma place_cps_id t i {T} f : @place_cps t i T f = f (place t i). Proof. cbv [place]; induction i; prove_id. Qed. Hint Opaque place : uncps. Hint Rewrite place_cps_id : uncps. Lemma place_cps_in_range (t:limb) (n:nat) : (fst (place_cps t n id) < S n)%nat. Proof. induction n; simpl; break_match; simpl; omega. Qed. Lemma weight_place_cps t i : weight (fst (place_cps t i id)) * snd (place_cps t i id) = fst t * snd t. Proof. induction i; cbv [id]; simpl place_cps; break_match; autorewrite with cancel_pair; try find_apply_lem_hyp Z_div_exact_full_2; nsatz || auto. Qed. Definition from_associational_cps n (p:list limb) {T} (f:tuple Z n->T):= fold_right_cps (fun t st => place_cps t (pred n) (fun p=> add_to_nth_cps (fst p) (snd p) st id)) (zeros n) p f. Definition from_associational n p := from_associational_cps n p id. Lemma from_associational_cps_id {n} p {T} f: @from_associational_cps n p T f = f (from_associational n p). Proof. cbv [from_associational_cps from_associational]; prove_id. Qed. Hint Opaque from_associational : uncps. Hint Rewrite @from_associational_cps_id : uncps. Lemma eval_from_associational {n} p (n_nonzero:n<>O): eval (from_associational n p) = Associational.eval p. Proof. cbv [from_associational_cps from_associational]; induction p; [|pose proof (place_cps_in_range a (pred n))]; prove_eval. cbv [place]; rewrite weight_place_cps. nsatz. Qed. Hint Rewrite @eval_from_associational using omega : push_basesystem_eval. Section Carries. Context {modulo div : Z->Z->Z}. Context {div_mod : forall a b:Z, b <> 0 -> a = b * (div a b) + modulo a b}. Definition carry_cps {n m} (index:nat) (p:tuple Z n) {T} (f:tuple Z m->T) := to_associational_cps p (fun P => @Associational.carry_cps modulo div (weight index) (weight (S index) / weight index) P T (fun R => from_associational_cps m R f)). Definition carry {n m} i p := @carry_cps n m i p _ id. Lemma carry_cps_id {n m} i p {T} f: @carry_cps n m i p T f = f (carry i p). Proof. cbv [carry_cps carry]; prove_id; rewrite carry_cps_id; reflexivity. Qed. Hint Opaque carry : uncps. Hint Rewrite @carry_cps_id : uncps. Lemma eval_carry {n m} i p: (n <> 0%nat) -> (m <> 0%nat) -> weight (S i) / weight i <> 0 -> eval (carry (n:=n) (m:=m) i p) = eval p. Proof. cbv [carry_cps carry]; intros. prove_eval. rewrite @eval_carry by eauto. apply eval_to_associational. Qed. Hint Rewrite @eval_carry : push_basesystem_eval. (* N.B. It is important to reverse [idxs] here. Like [fold_right], [fold_right_cps2] is written such that the first terms in the list are actually used last in the computation. For example, running: `Eval cbv - [Z.add] in (fun a b c d => fold_right Z.add d [a;b;c]).` will produce [fun a b c d => (a + (b + (c + d)))].*) Definition chained_carries_cps {n} (p:tuple Z n) (idxs : list nat) {T} (f:tuple Z n->T) := fold_right_cps2 carry_cps p (rev idxs) f. Definition chained_carries {n} p idxs := @chained_carries_cps n p idxs _ id. Lemma chained_carries_id {n} p idxs : forall {T} f, @chained_carries_cps n p idxs T f = f (chained_carries p idxs). Proof. cbv [chained_carries_cps chained_carries]; prove_id. Qed. Hint Opaque chained_carries : uncps. Hint Rewrite @chained_carries_id : uncps. Lemma eval_chained_carries {n} (p:tuple Z n) idxs : (forall i, In i idxs -> weight (S i) / weight i <> 0) -> eval (chained_carries p idxs) = eval p. Proof. cbv [chained_carries chained_carries_cps]; intros; autorewrite with uncps push_id. apply fold_right_invariant; [|intro; rewrite <-in_rev]; destruct n; prove_eval; auto. Qed. Hint Rewrite @eval_chained_carries : push_basesystem_eval. (* Reverse of [eval]; ranslate from Z to basesystem by putting everything in first digit and then carrying. This function, like [eval], is not defined using CPS. *) Definition encode {n} (x : Z) : tuple Z n := chained_carries (from_associational n [(1,x)]) (seq 0 n). Lemma eval_encode {n} x : (n <> 0%nat) -> (forall i, In i (seq 0 n) -> weight (S i) / weight i <> 0) -> eval (@encode n x) = x. Proof. cbv [encode]; intros; prove_eval; auto. Qed. Hint Rewrite @eval_encode : push_basesystem_eval. End Carries. Section Wrappers. (* Simple wrappers for Associational definitions; convert to associational, do the operation, convert back. *) Definition add_cps {n} (p q : tuple Z n) {T} (f:tuple Z n->T) := to_associational_cps p (fun P => to_associational_cps q (fun Q => from_associational_cps n (P++Q) f)). Definition mul_cps {n m} (p q : tuple Z n) {T} (f:tuple Z m->T) := to_associational_cps p (fun P => to_associational_cps q (fun Q => Associational.mul_cps P Q (fun PQ => from_associational_cps m PQ f))). Definition reduce_cps {m n} (s:Z) (c:list B.limb) (p : tuple Z m) {T} (f:tuple Z n->T) := to_associational_cps p (fun P => Associational.reduce_cps s c P (fun R => from_associational_cps n R f)). Definition carry_reduce_cps {n div modulo} (s:Z) (c:list limb) (p : tuple Z n) {T} (f: tuple Z n ->T) := carry_cps (div:=div) (modulo:=modulo) (n:=n) (m:=S n) (pred n) p (fun r => reduce_cps (m:=S n) (n:=n) s c r f). Definition negate_snd_cps {n} (p : tuple Z n) {T} (f:tuple Z n->T) := to_associational_cps p (fun P => Associational.negate_snd_cps P (fun R => from_associational_cps n R f)). End Wrappers. Hint Unfold Positional.add_cps Positional.mul_cps Positional.reduce_cps Positional.carry_reduce_cps Positional.negate_snd_cps . Section Subtraction. Context {m n} {coef : tuple Z n} {coef_mod : mod_eq m (eval coef) 0}. Definition sub_cps (p q : tuple Z n) {T} (f:tuple Z n->T):= add_cps coef p (fun cp => negate_snd_cps q (fun _q => add_cps cp _q f)). Definition sub p q := sub_cps p q id. Lemma sub_id p q {T} f : @sub_cps p q T f = f (sub p q). Proof. cbv [sub_cps sub]; autounfold; prove_id. Qed. Hint Opaque sub : uncps. Hint Rewrite sub_id : uncps. Lemma eval_sub p q : mod_eq m (eval (sub p q)) (eval p - eval q). Proof. cbv [sub sub_cps]; autounfold; destruct n; prove_eval. transitivity (eval coef + (eval p - eval q)). { apply f_equal2; ring. } { cbv [mod_eq] in *; rewrite Z.add_mod_full, coef_mod, Z.add_0_l, Zmod_mod. reflexivity. } Qed. Definition opp_cps (p : tuple Z n) {T} (f:tuple Z n->T):= sub_cps (zeros n) p f. End Subtraction. (* Lemmas about converting to/from F. Will be useful in proving that basesystem is isomorphic to F.commutative_ring_modulo.*) Section F. Context {sz:nat} {sz_nonzero : sz<>0%nat} {m :positive}. Context (weight_divides : forall i : nat, weight (S i) / weight i <> 0). Context {modulo div:Z->Z->Z} {div_mod : forall a b:Z, b <> 0 -> a = b * (div a b) + modulo a b}. Definition Fencode (x : F m) : tuple Z sz := encode (div:=div) (modulo:=modulo) (F.to_Z x). Definition Fdecode (x : tuple Z sz) : F m := F.of_Z m (eval x). Lemma Fdecode_Fencode_id x : Fdecode (Fencode x) = x. Proof. cbv [Fdecode Fencode]; rewrite @eval_encode by auto. apply F.of_Z_to_Z. Qed. Lemma eq_Feq_iff a b : Logic.eq (Fdecode a) (Fdecode b) <-> eq m a b. Proof. cbv [Fdecode]; rewrite <-F.eq_of_Z_iff; reflexivity. Qed. End F. End Positional. (* Helper lemmas and definitions for [eval]; this needs to be in a separate section so the weight function can change. *) Section EvalHelpers. Lemma eval_single wt (x:Z) : eval (n:=1) wt x = wt 0%nat * x. Proof. cbv - [Z.mul Z.add]. ring. Qed. Lemma eval_step {n} (x:tuple Z n) : forall wt z, eval wt (Tuple.append z x) = wt 0%nat * z + eval (fun i => wt (S i)) x. Proof. destruct n; [reflexivity|]. intros; cbv [eval to_associational_cps]. autorewrite with uncps. rewrite map_S_seq. reflexivity. Qed. Lemma eval_wt_equiv {n} :forall wta wtb (x:tuple Z n), (forall i, wta i = wtb i) -> eval wta x = eval wtb x. Proof. destruct n; [reflexivity|]. induction n; intros; [rewrite !eval_single, H; reflexivity|]. simpl tuple in *; destruct x. change (t, z) with (Tuple.append (n:=S n) z t). rewrite !eval_step. rewrite (H 0%nat). apply Group.cancel_left. apply IHn; auto. Qed. Definition eval_from {n} weight (offset:nat) (x : tuple Z n) : Z := eval (fun i => weight (i+offset)%nat) x. Lemma eval_from_0 {n} wt x : @eval_from n wt 0 x = eval wt x. Proof. cbv [eval_from]. auto using eval_wt_equiv. Qed. End EvalHelpers. End Positional. Hint Unfold Positional.add_cps Positional.mul_cps Positional.reduce_cps Positional.carry_reduce_cps Positional.negate_snd_cps Positional.opp_cps . Hint Rewrite @Associational.carry_cps_id @Associational.carryterm_cps_id @Associational.reduce_cps_id @Associational.split_cps_id @Associational.mul_cps_id @Positional.carry_cps_id @Positional.from_associational_cps_id @Positional.place_cps_id @Positional.add_to_nth_cps_id @Positional.to_associational_cps_id @Positional.chained_carries_id @Positional.sub_id : uncps. Hint Rewrite @Associational.eval_mul @Positional.eval_to_associational @Associational.eval_carry @Associational.eval_carryterm @Associational.eval_reduce @Associational.eval_split @Positional.eval_zeros @Positional.eval_carry @Positional.eval_from_associational @Positional.eval_add_to_nth @Positional.eval_chained_carries @Positional.eval_sub using (assumption || vm_decide) : push_basesystem_eval. End B. (* Modulo and div that do shifts if possible, otherwise normal mod/div *) Section DivMod. Definition modulo (a b : Z) : Z := if dec (2 ^ (Z.log2 b) = b) then let x := (Z.ones (Z.log2 b)) in (a &' x)%RT else Z.modulo a b. Definition div (a b : Z) : Z := if dec (2 ^ (Z.log2 b) = b) then let x := Z.log2 b in (a >> x)%RT else Z.div a b. Lemma div_mod a b (H:b <> 0) : a = b * div a b + modulo a b. Proof. cbv [div modulo]; intros. break_if; auto using Z.div_mod. rewrite Z.land_ones, Z.shiftr_div_pow2 by apply Z.log2_nonneg. pose proof (Z.div_mod a b H). congruence. Qed. End DivMod. Import B. Ltac basesystem_partial_evaluation_RHS := let t0 := match goal with |- _ _ ?t => t end in let t := (eval cbv delta [ (* this list must contain all definitions referenced by t that reference [Let_In], [runtime_add], [runtime_opp], [runtime_mul], [runtime_shr], or [runtime_and] *) Positional.to_associational_cps Positional.to_associational Positional.eval Positional.zeros Positional.add_to_nth_cps Positional.add_to_nth Positional.place_cps Positional.place Positional.from_associational_cps Positional.from_associational Positional.carry_cps Positional.carry Positional.chained_carries_cps Positional.chained_carries Positional.sub_cps Positional.sub Positional.negate_snd_cps Positional.add_cps Positional.opp_cps Associational.eval Associational.multerm Associational.mul_cps Associational.mul Associational.split_cps Associational.split Associational.reduce_cps Associational.reduce Associational.carryterm_cps Associational.carryterm Associational.carry_cps Associational.carry Associational.negate_snd_cps Associational.negate_snd div modulo ] in t0) in let t := (eval pattern @runtime_mul in t) in let t := match t with ?t _ => t end in let t := (eval pattern @runtime_add in t) in let t := match t with ?t _ => t end in let t := (eval pattern @runtime_opp in t) in let t := match t with ?t _ => t end in let t := (eval pattern @runtime_shr in t) in let t := match t with ?t _ => t end in let t := (eval pattern @runtime_and in t) in let t := match t with ?t _ => t end in let t := (eval pattern @Let_In in t) in let t := match t with ?t _ => t end in let t1 := fresh "t1" in pose t as t1; transitivity (t1 (@Let_In) (@runtime_and) (@runtime_shr) (@runtime_opp) (@runtime_add) (@runtime_mul)); [replace_with_vm_compute t1; clear t1|reflexivity]. (** This block of tactic code works around bug #5434 (https://coq.inria.fr/bugs/show_bug.cgi?id=5434), that [vm_compute] breaks an invariant in pretyping/constr_matching.ml. So we refresh all of the names in match statements in the goal by crawling it. In particular, [replace_with_vm_compute] creates a [vm_compute]d term which has anonymous binders where pretyping expects there to be named binders. This shows up when you try to match on the function (the branch statement of the match) with an Ltac pattern like [(fun x : ?T => ?C)] rather than [(fun x : ?T => @?C x)]; we use the former in reification to save the cost of many extra invocations of [cbv beta]. Luckily, patterns like [(fun x : ?T => @?C x)] don't trigger this anomaly, so we can walk the term, fixing all match statements whose branches are functions whose binder names were eaten by [vm_compute] (note that in a match, every branch where the corresponding constructor takes arguments is represented internally as a function (lambda term)). We fix the match statements by pulling out the branch with the [@?] pattern that doesn't trigger the anomaly, and then recreating the match with a destructuring [let] that hasn't been through [vm_compute], and therefore has name information that constr_matching is happy with. *) Ltac replace_match_with_destructuring_match T := match T with | ?F ?X => let F' := replace_match_with_destructuring_match F in let X' := replace_match_with_destructuring_match X in constr:(F' X') (* we must use [@?f a b] here and not [?f], or else we get an anomaly *) | match ?d with pair a b => @?f a b end => let d' := replace_match_with_destructuring_match d in let T' := fresh in constr:(let '(a, b) := d' in match f a b with | T' => ltac:(let v := (eval cbv beta delta [T'] in T') in let v := replace_match_with_destructuring_match v in exact v) end) | ?x => x end. Ltac do_replace_match_with_destructuring_match_in_goal := let G := get_goal in let G' := replace_match_with_destructuring_match G in change G'. (* TODO : move *) Lemma F_of_Z_opp {m} x : F.of_Z m (- x) = F.opp (F.of_Z m x). Proof. cbv [F.opp]; intros. rewrite F.to_Z_of_Z, <-Z.sub_0_l. etransitivity; rewrite F.of_Z_mod; [rewrite Z.opp_mod_mod|]; reflexivity. Qed. Hint Rewrite <-@F.of_Z_add : pull_FofZ. Hint Rewrite <-@F.of_Z_mul : pull_FofZ. Hint Rewrite <-@F.of_Z_sub : pull_FofZ. Hint Rewrite <-@F_of_Z_opp : pull_FofZ. Ltac F_mod_eq := cbv [Positional.Fdecode]; autorewrite with pull_FofZ; apply mod_eq_Z2F_iff. Ltac solve_op_mod_eq wt x := transitivity (Positional.eval wt x); repeat autounfold; [|autorewrite with uncps push_id push_basesystem_eval; reflexivity]; cbv [mod_eq]; apply f_equal2; [|reflexivity]; apply f_equal; basesystem_partial_evaluation_RHS; do_replace_match_with_destructuring_match_in_goal. Ltac solve_op_F wt x := F_mod_eq; solve_op_mod_eq wt x.