Require Import Crypto.Algebra Crypto.Algebra.Field. Require Import Crypto.Util.GlobalSettings. Require Import Crypto.Util.Tactics Crypto.Util.Sum Crypto.Util.Prod. Require Import Crypto.Spec.MontgomeryCurve Crypto.Spec.WeierstrassCurve. Require Import Crypto.WeierstrassCurve.WeierstrassCurveTheorems. Module M. Section MontgomeryCurve. Import BinNat. Context {F Feq Fzero Fone Fopp Fadd Fsub Fmul Finv Fdiv} {field:@Algebra.field F Feq Fzero Fone Fopp Fadd Fsub Fmul Finv Fdiv} {Feq_dec:Decidable.DecidableRel Feq} {char_ge_3:@Ring.char_ge F Feq Fzero Fone Fopp Fadd Fsub Fmul (BinNat.N.succ_pos (BinNat.N.two))}. Local Infix "=" := Feq : type_scope. Local Notation "a <> b" := (not (a = b)) : type_scope. Local Infix "+" := Fadd. Local Infix "*" := Fmul. Local Infix "-" := Fsub. Local Infix "/" := Fdiv. Local Notation "- x" := (Fopp x). Local Notation "x ^ 2" := (x*x) (at level 30). Local Notation "x ^ 3" := (x*x^2) (at level 30). Local Notation "0" := Fzero. Local Notation "1" := Fone. Local Notation "2" := (1+1). Local Notation "3" := (1+2). Local Notation "'∞'" := unit : type_scope. Local Notation "'∞'" := (inr tt) : core_scope. Local Notation "( x , y )" := (inl (pair x y)). Local Open Scope core_scope. Context {a b: F} {b_nonzero:b <> 0}. Program Definition opp (P:@M.point F Feq Fadd Fmul a b) : @M.point F Feq Fadd Fmul a b := match P return F*F+∞ with | (x, y) => (x, -y) | ∞ => ∞ end. Next Obligation. Proof. destruct P; cbv; break_match; trivial; fsatz. Qed. Ltac t := repeat match goal with | _ => solve [ trivial ] | _ => progress intros | _ => progress subst | _ => progress Tactics.DestructHead.destruct_head' @M.point | _ => progress Tactics.DestructHead.destruct_head' @prod | _ => progress Tactics.DestructHead.destruct_head' @sum | _ => progress Tactics.DestructHead.destruct_head' @and | _ => progress Sum.inversion_sum | _ => progress Prod.inversion_prod | _ => progress Tactics.BreakMatch.break_match_hyps | _ => progress Tactics.BreakMatch.break_match | _ => progress cbv [M.coordinates M.add M.zero M.eq opp proj1_sig] in * | _ => progress cbv [W.coordinates W.add W.zero W.eq W.inv proj1_sig] in * | |- _ /\ _ => split | |- _ <-> _ => split end. Local Notation add := (M.add(b_nonzero:=b_nonzero)). Local Notation point := (@M.point F Feq Fadd Fmul a b). Section MontgomeryWeierstrass. Local Notation "4" := (1+3). Local Notation "16" := (4*4). Local Notation "9" := (3*3). Local Notation "27" := (3*9). Context {char_ge_28:@Ring.char_ge F Feq Fzero Fone Fopp Fadd Fsub Fmul 28}. Local Notation WeierstrassA := ((3-a^2)/(3*b^2)). Local Notation WeierstrassB := ((2*a^3-9*a)/(27*b^3)). Local Notation Wpoint := (@W.point F Feq Fadd Fmul WeierstrassA WeierstrassB). Local Notation Wadd := (@W.add F Feq Fzero Fone Fopp Fadd Fsub Fmul Finv Fdiv field Feq_dec char_ge_3 WeierstrassA WeierstrassB). Program Definition to_Weierstrass (P:@point) : Wpoint := match M.coordinates P return F*F+∞ with | (x, y) => ((x + a/3)/b, y/b) | _ => ∞ end. Next Obligation. Proof. t; fsatz. Qed. Program Definition of_Weierstrass (P:Wpoint) : point := match W.coordinates P return F*F+∞ with | (x,y) => (b*x-a/3, b*y) | _ => ∞ end. Next Obligation. Proof. t. fsatz. Qed. (*TODO: rename inv to opp, make it not require [discr_nonzero] *) Context {discr_nonzero : (2 + 1 + 1) * WeierstrassA * WeierstrassA * WeierstrassA + ((2 + 1 + 1) ^ 2 + (2 + 1 + 1) + (2 + 1 + 1) + 1 + 1 + 1) * WeierstrassB * WeierstrassB <> 0}. (* TODO: weakening lemma for characteristic *) Context {char_ge_12:@Ring.char_ge F Feq Fzero Fone Fopp Fadd Fsub Fmul 12}. Local Notation Wopp := (@W.inv F Feq Fzero Fone Fopp Fadd Fsub Fmul Finv Fdiv WeierstrassA WeierstrassB field Feq_dec discr_nonzero). Program Definition _MW : _ /\ _ /\ _ := @Group.group_from_redundant_representation Wpoint W.eq Wadd W.zero Wopp (abelian_group_group (W.commutative_group(discriminant_nonzero:=discr_nonzero))) point M.eq (M.add(b_nonzero:=b_nonzero)) M.zero opp of_Weierstrass to_Weierstrass _ _ _ _ _ . Next Obligation. Proof. cbv [of_Weierstrass to_Weierstrass]; t; clear discr_nonzero; fsatz. Qed. Next Obligation. Proof. cbv [of_Weierstrass to_Weierstrass]; t; clear discr_nonzero; fsatz. Qed. Next Obligation. Proof. cbv [of_Weierstrass to_Weierstrass]; t; clear discr_nonzero; fsatz. Qed. Next Obligation. Proof. cbv [of_Weierstrass to_Weierstrass]; t; clear discr_nonzero; fsatz. Qed. Next Obligation. Proof. cbv [of_Weierstrass to_Weierstrass]; t; clear discr_nonzero; fsatz. Qed. Global Instance group : Algebra.group := proj1 _MW. Global Instance homomorphism_of_Weierstrass : Monoid.is_homomorphism(phi:=of_Weierstrass) := proj1 (proj2 _MW). Global Instance homomorphism_to_Weierstrass : Monoid.is_homomorphism(phi:=to_Weierstrass) := proj2 (proj2 _MW). End MontgomeryWeierstrass. End MontgomeryCurve. End M.