Require Import Coq.ZArith.Zpower Coq.ZArith.ZArith. Require Import Coq.Numbers.Natural.Peano.NPeano. Require Import Coq.Lists.List. Require Import Crypto.Tactics.VerdiTactics. Require Import Crypto.BaseSystem. Require Import Crypto.BaseSystemProofs. Require Import Crypto.ModularArithmetic.ExtendedBaseVector. Require Import Crypto.ModularArithmetic.Pow2Base. Require Import Crypto.ModularArithmetic.Pow2BaseProofs. Require Import Crypto.ModularArithmetic.PrimeFieldTheorems. Require Import Crypto.ModularArithmetic.PseudoMersenneBaseParams. Require Import Crypto.ModularArithmetic.PseudoMersenneBaseParamProofs. Require Import Crypto.ModularArithmetic.ModularBaseSystemList. Require Import Crypto.ModularArithmetic.ModularBaseSystemListProofs. Require Import Crypto.ModularArithmetic.ModularBaseSystem. Require Import Crypto.Util.ListUtil Crypto.Util.CaseUtil Crypto.Util.ZUtil Crypto.Util.NatUtil. Require Import Crypto.Util.Tuple. Require Import Crypto.Util.Tactics. Require Import Crypto.Util.Notations. Require Export Crypto.Util.FixCoqMistakes. Local Open Scope Z_scope. Local Opaque add_to_nth carry_simple. Section PseudoMersenneProofs. Context `{prm :PseudoMersenneBaseParams}. Local Arguments to_list {_ _} _. Local Arguments from_list {_ _} _ _. Local Hint Unfold decode. Local Notation "u ~= x" := (rep u x). Local Notation digits := (tuple Z (length limb_widths)). Local Hint Resolve (@limb_widths_nonneg _ prm) sum_firstn_limb_widths_nonneg. Local Hint Resolve log_cap_nonneg. Local Notation base := (base_from_limb_widths limb_widths). Local Notation log_cap i := (nth_default 0 limb_widths i). Local Hint Unfold rep decode ModularBaseSystemList.decode. Lemma rep_decode : forall us x, us ~= x -> decode us = x. Proof. autounfold; intuition. Qed. Lemma decode_rep : forall us, rep us (decode us). Proof. cbv [rep]; auto. Qed. Lemma lt_modulus_2k : modulus < 2 ^ k. Proof. replace (2 ^ k) with (modulus + c) by (unfold c; ring). pose proof c_pos; omega. Qed. Hint Resolve lt_modulus_2k. Lemma modulus_pos : 0 < modulus. Proof. pose proof (NumTheoryUtil.lt_1_p _ prime_modulus); omega. Qed. Hint Resolve modulus_pos. (** TODO(jadep, from jgross): The abstraction barrier of [base]/[limb_widths] is repeatedly broken in the following proofs. This lemma should almost never be needed, but removing it breaks everything. (And using [distr_length] is too much of a sledgehammer, and demolishes the abstraction barrier that's currently merely in pieces.) *) Lemma base_length : length base = length limb_widths. Proof. distr_length. Qed. Lemma base_length_nonzero : length base <> 0%nat. Proof. distr_length. pose proof limb_widths_nonnil. destruct limb_widths; simpl in *; congruence. Qed. Lemma encode_eq : forall x : F modulus, ModularBaseSystemList.encode x = BaseSystem.encode base x (2 ^ k). Proof. cbv [ModularBaseSystemList.encode BaseSystem.encode encodeZ]; intros. rewrite base_length. apply encode'_spec; auto using Nat.eq_le_incl, base_length. Qed. Lemma encode_rep : forall x : F modulus, encode x ~= x. Proof. autounfold; cbv [encode]; intros. rewrite to_list_from_list; autounfold. rewrite encode_eq, encode_rep. + apply ZToField_FieldToZ. + apply bv. + split; [ | etransitivity]; try (apply FieldToZ_range; auto using modulus_pos); auto. + eauto using base_upper_bound_compatible, limb_widths_nonneg. Qed. Lemma add_rep : forall u v x y, u ~= x -> v ~= y -> add u v ~= (x+y)%F. Proof. autounfold; cbv [add]; intros. rewrite to_list_from_list; autounfold. rewrite add_rep, ZToField_add. f_equal; assumption. Qed. Local Hint Resolve firstn_us_base_ext_base bv ExtBaseVector limb_widths_match_modulus. Local Hint Extern 1 => apply limb_widths_match_modulus. Lemma modulus_nonzero : modulus <> 0. pose proof (Znumtheory.prime_ge_2 _ prime_modulus); omega. Qed. (* a = r + s(2^k) = r + s(2^k - c + c) = r + s(2^k - c) + cs = r + cs *) Lemma pseudomersenne_add: forall x y, (x + ((2^k) * y)) mod modulus = (x + (c * y)) mod modulus. Proof. intros. replace (2^k) with ((2^k - c) + c) by ring. rewrite Z.mul_add_distr_r, Zplus_mod. unfold c. rewrite Z.sub_sub_distr, Z.sub_diag. simpl. rewrite Z.mul_comm, Z.mod_add_l; auto using modulus_nonzero. rewrite <- Zplus_mod; auto. Qed. Lemma pseudomersenne_add': forall x y0 y1 z, (z - x + ((2^k) * y0 * y1)) mod modulus = (c * y0 * y1 - x + z) mod modulus. Proof. intros; rewrite <- !Z.add_opp_r, <- !Z.mul_assoc, pseudomersenne_add; apply f_equal2; omega. Qed. Lemma extended_shiftadd: forall (us : BaseSystem.digits), BaseSystem.decode (ext_base limb_widths) us = BaseSystem.decode base (firstn (length base) us) + (2^k * BaseSystem.decode base (skipn (length base) us)). Proof. intros. unfold BaseSystem.decode; rewrite <- mul_each_rep. rewrite ext_base_alt by auto. fold k. replace (map (Z.mul (2 ^ k)) base) with (BaseSystem.mul_each (2 ^ k) base) by auto. rewrite base_mul_app. rewrite <- mul_each_rep; auto. Qed. Lemma reduce_rep : forall us, BaseSystem.decode base (reduce us) mod modulus = BaseSystem.decode (ext_base limb_widths) us mod modulus. Proof. cbv [reduce]; intros. rewrite extended_shiftadd, base_length, pseudomersenne_add, BaseSystemProofs.add_rep. change (map (Z.mul c)) with (BaseSystem.mul_each c). rewrite mul_each_rep; auto. Qed. Lemma mul_rep : forall u v x y, u ~= x -> v ~= y -> mul u v ~= (x*y)%F. Proof. autounfold in *; unfold ModularBaseSystem.mul in *. intuition idtac; subst. rewrite to_list_from_list. cbv [ModularBaseSystemList.mul ModularBaseSystemList.decode]. rewrite ZToField_mod, reduce_rep, <-ZToField_mod. pose proof (@base_from_limb_widths_length limb_widths). rewrite mul_rep by (auto using ExtBaseVector || rewrite extended_base_length, !length_to_list; omega). rewrite 2decode_short by (rewrite ?base_from_limb_widths_length; auto using Nat.eq_le_incl, length_to_list with omega). apply ZToField_mul. Qed. Lemma nth_default_base_positive : forall i, (i < length base)%nat -> nth_default 0 base i > 0. Proof. intros. pose proof (nth_error_length_exists_value _ _ H). destruct H0. pose proof (nth_error_value_In _ _ _ H0). pose proof (BaseSystem.base_positive _ H1). unfold nth_default. rewrite H0; auto. Qed. Lemma base_succ_div_mult : forall i, ((S i) < length base)%nat -> nth_default 0 base (S i) = nth_default 0 base i * (nth_default 0 base (S i) / nth_default 0 base i). Proof. intros. apply Z_div_exact_2; try (apply nth_default_base_positive; omega). apply base_succ; distr_length; eauto. Qed. Lemma Fdecode_decode_mod : forall us x, decode us = x -> BaseSystem.decode base (to_list us) mod modulus = x. Proof. autounfold; intros. rewrite <-H. apply FieldToZ_ZToField. Qed. Definition carry_done us := forall i, (i < length base)%nat -> 0 <= nth_default 0 us i /\ Z.shiftr (nth_default 0 us i) (log_cap i) = 0. Lemma carry_done_bounds : forall us, (length us = length base) -> (carry_done us <-> forall i, 0 <= nth_default 0 us i < 2 ^ log_cap i). Proof. intros ? ?; unfold carry_done; split; [ intros Hcarry_done i | intros Hbounds i i_lt ]. + destruct (lt_dec i (length base)) as [i_lt | i_nlt]. - specialize (Hcarry_done i i_lt). split; [ intuition | ]. destruct Hcarry_done as [Hnth_nonneg Hshiftr_0]. apply Z.shiftr_eq_0_iff in Hshiftr_0. destruct Hshiftr_0 as [nth_0 | [] ]; [ rewrite nth_0; zero_bounds | ]. apply Z.log2_lt_pow2; auto. - rewrite nth_default_out_of_bounds by omega. split; zero_bounds. + specialize (Hbounds i). split; [ intuition | ]. destruct Hbounds as [nth_nonneg nth_lt_pow2]. apply Z.shiftr_eq_0_iff. apply Z.le_lteq in nth_nonneg; destruct nth_nonneg; try solve [left; auto]. right; split; auto. apply Z.log2_lt_pow2; auto. Qed. Context (mm : digits) (mm_spec : decode mm = 0%F). Lemma sub_rep : forall u v x y, u ~= x -> v ~= y -> ModularBaseSystem.sub mm u v ~= (x-y)%F. Proof. autounfold; cbv [sub]; intros. rewrite to_list_from_list; autounfold. cbv [ModularBaseSystemList.sub]. rewrite BaseSystemProofs.sub_rep, BaseSystemProofs.add_rep. rewrite ZToField_sub, ZToField_add, ZToField_mod. apply Fdecode_decode_mod in mm_spec; cbv [BaseSystem.decode] in *. rewrite mm_spec, F_add_0_l. f_equal; assumption. Qed. End PseudoMersenneProofs. Opaque encode add mul sub. Section CarryProofs. Context `{prm : PseudoMersenneBaseParams}. Local Notation base := (base_from_limb_widths limb_widths). Local Notation log_cap i := (nth_default 0 limb_widths i). Local Notation "u ~= x" := (rep u x). Local Hint Resolve (@limb_widths_nonneg _ prm) sum_firstn_limb_widths_nonneg. Lemma base_length_lt_pred : (pred (length base) < length base)%nat. Proof. pose proof base_length_nonzero; omega. Qed. Hint Resolve base_length_lt_pred. Lemma carry_decode_eq_reduce : forall us, (length us = length limb_widths) -> BaseSystem.decode base (carry_and_reduce (pred (length limb_widths)) us) mod modulus = BaseSystem.decode base us mod modulus. Proof. cbv [carry_and_reduce]; intros. rewrite carry_gen_decode_eq; auto. distr_length. assert (0 < length limb_widths)%nat by (pose proof limb_widths_nonnil; destruct limb_widths; distr_length; congruence). repeat break_if; repeat rewrite ?pred_mod, ?Nat.succ_pred,?Nat.mod_same in * by omega; try omega. rewrite !nth_default_base by (auto || destruct (length limb_widths); auto). rewrite sum_firstn_0. autorewrite with zsimplify. match goal with |- appcontext[2 ^ ?a * ?b * 2 ^ ?c] => replace (2 ^ a * b * 2 ^ c) with (2 ^ (a + c) * b) end. { rewrite <-sum_firstn_succ by (apply nth_error_Some_nth_default; destruct (length limb_widths); auto). rewrite Nat.succ_pred by omega. remember (pred (length limb_widths)) as pred_len. fold k. rewrite <-Z.mul_sub_distr_r. replace (c - 2 ^ k) with (modulus * -1) by (cbv [c]; ring). rewrite <-Z.mul_assoc. apply Z.mod_add_l'. pose proof prime_modulus. Z.prime_bound. } { rewrite Z.pow_add_r; auto using log_cap_nonneg, sum_firstn_limb_widths_nonneg. rewrite <-!Z.mul_assoc. apply Z.mul_cancel_l; try ring. apply Z.pow_nonzero; (omega || auto using log_cap_nonneg). } Qed. Lemma carry_rep : forall i us x, (length us = length limb_widths)%nat -> (i < length limb_widths)%nat -> forall pf1 pf2, from_list _ us pf1 ~= x -> from_list _ (carry i us) pf2 ~= x. Proof. cbv [carry rep decode]; intros. rewrite to_list_from_list. pose proof carry_decode_eq_reduce. pose proof (@carry_simple_decode_eq limb_widths). specialize_by eauto. cbv [ModularBaseSystemList.carry]. break_if; subst; eauto. apply F_eq. rewrite to_list_from_list. apply carry_decode_eq_reduce. auto. cbv [ModularBaseSystemList.decode]. apply ZToField_eqmod. rewrite to_list_from_list, carry_simple_decode_eq; try omega; distr_length; auto. Qed. Hint Resolve carry_rep. Lemma carry_sequence_rep : forall is us x, (forall i, In i is -> (i < length limb_widths)%nat) -> us ~= x -> forall pf, from_list _ (carry_sequence is (to_list _ us)) pf ~= x. Proof. induction is; intros. + cbv [carry_sequence fold_right]. rewrite from_list_to_list. assumption. + simpl. apply carry_rep with (pf1 := length_carry_sequence (length_to_list us)); auto using length_carry_sequence, length_to_list, in_eq. apply IHis; auto using in_cons. Qed. Lemma carry_full_preserves_rep : forall us x, rep us x -> rep (carry_full us) x. Proof. unfold carry_full; intros. apply carry_sequence_rep; auto. unfold full_carry_chain; apply make_chain_lt. Qed. Opaque carry_full. Lemma carry_mul_rep : forall us vs x y, rep us x -> rep vs y -> rep (carry_mul us vs) (x * y)%F. Proof. unfold carry_mul; intros; apply carry_full_preserves_rep. auto using mul_rep. Qed. End CarryProofs. Hint Rewrite @length_carry_and_reduce @length_carry : distr_length. Section CanonicalizationProofs. Context `{prm : PseudoMersenneBaseParams}. Local Notation base := (base_from_limb_widths limb_widths). Local Notation log_cap i := (nth_default 0 limb_widths i). Context (lt_1_length_base : (1 < length limb_widths)%nat) {B} (B_pos : 0 < B) (B_compat : forall w, In w limb_widths -> w <= B) (* on the first reduce step, we add at most one bit of width to the first digit *) (c_reduce1 : c * ((2 ^ B) >> log_cap (pred (length limb_widths))) <= 2 ^ log_cap 0) (* on the second reduce step, we add at most one bit of width to the first digit, and leave room to carry c one more time after the highest bit is carried *) (c_reduce2 : c <= nth_default 0 modulus_digits 0) (* this condition is probably implied by c_reduce2, but is more straighforward to compute than to prove *) (two_pow_k_le_2modulus : 2 ^ k <= 2 * modulus). Local Hint Resolve (@limb_widths_nonneg _ prm) sum_firstn_limb_widths_nonneg. Local Hint Resolve log_cap_nonneg. Lemma nth_default_carry_and_reduce_full : forall n i us, nth_default 0 (carry_and_reduce i us) n = if lt_dec n (length us) then (if eq_nat_dec n (i mod length limb_widths) then Z.pow2_mod (nth_default 0 us n) (log_cap n) else nth_default 0 us n) + if eq_nat_dec n (S (i mod length limb_widths) mod length limb_widths) then c * nth_default 0 us (i mod length limb_widths) >> log_cap (i mod length limb_widths) else 0 else 0. Proof. cbv [carry_and_reduce]; intros. autorewrite with push_nth_default. reflexivity. Qed. Hint Rewrite @nth_default_carry_and_reduce_full : push_nth_default. Lemma nth_default_carry_full : forall n i us, length us = length limb_widths -> nth_default 0 (carry i us) n = if lt_dec n (length us) then if eq_nat_dec i (pred (length limb_widths)) then (if eq_nat_dec n i then Z.pow2_mod (nth_default 0 us n) (log_cap n) else nth_default 0 us n) + if eq_nat_dec n 0 then c * (nth_default 0 us i >> log_cap i) else 0 else if eq_nat_dec n i then Z.pow2_mod (nth_default 0 us n) (log_cap n) else nth_default 0 us n + if eq_nat_dec n (S i) then nth_default 0 us i >> log_cap i else 0 else 0. Proof. intros. cbv [carry]. break_if. + subst i. autorewrite with push_nth_default natsimplify. destruct (eq_nat_dec (length limb_widths) (length us)); congruence. + autorewrite with push_nth_default; reflexivity. Qed. Hint Rewrite @nth_default_carry_full : push_nth_default. Lemma nth_default_carry_sequence_make_chain_full : forall i n us, length us = length limb_widths -> (i <= length limb_widths)%nat -> nth_default 0 (carry_sequence (make_chain i) us) n = if lt_dec n (length limb_widths) then if eq_nat_dec i 0 then nth_default 0 us n else if lt_dec i (length limb_widths) then if lt_dec n i then if eq_nat_dec n (pred i) then Z.pow2_mod (nth_default 0 (carry_sequence (make_chain (pred i)) us) n) (log_cap n) else nth_default 0 (carry_sequence (make_chain (pred i)) us) n else nth_default 0 (carry_sequence (make_chain (pred i)) us) n + (if eq_nat_dec n i then (nth_default 0 (carry_sequence (make_chain (pred i)) us) (pred i)) >> log_cap (pred i) else 0) else if lt_dec n (pred i) then nth_default 0 (carry_sequence (make_chain (pred i)) us) n + (if eq_nat_dec n 0 then c * (nth_default 0 (carry_sequence (make_chain (pred i)) us) (pred i)) >> log_cap (pred i) else 0) else Z.pow2_mod (nth_default 0 (carry_sequence (make_chain (pred i)) us) n) (log_cap n) else 0. Proof. induction i; intros; cbv [ModularBaseSystemList.carry_sequence]. + cbv [pred make_chain fold_right]. repeat break_if; subst; omega || reflexivity || auto using Z.add_0_r. apply nth_default_out_of_bounds. omega. + replace (make_chain (S i)) with (i :: make_chain i) by reflexivity. rewrite fold_right_cons. autorewrite with push_nth_default natsimplify; rewrite ?Nat.pred_succ; fold (carry_sequence (make_chain i) us); rewrite length_carry_sequence; auto. repeat break_if; try omega; rewrite ?IHi by (omega || auto); rewrite ?Z.add_0_r; try reflexivity. Qed. Lemma nth_default_carry_full_full : forall n us, length us = length limb_widths -> nth_default 0 (ModularBaseSystemList.carry_full us) n = if lt_dec n (length limb_widths) then if eq_nat_dec n (pred (length limb_widths)) then Z.pow2_mod (nth_default 0 (carry_sequence (make_chain (pred (length limb_widths))) us) n) (log_cap n) else nth_default 0 (carry_sequence (make_chain (pred (length limb_widths))) us) n + (if eq_nat_dec n 0 then c * (nth_default 0 (carry_sequence (make_chain (pred (length limb_widths))) us) (pred (length limb_widths))) >> log_cap (pred (length limb_widths)) else 0) else 0. Proof. intros. cbv [ModularBaseSystemList.carry_full full_carry_chain]. rewrite (nth_default_carry_sequence_make_chain_full (length limb_widths)) by omega. repeat break_if; try omega; reflexivity. Qed. Hint Rewrite @nth_default_carry_full_full : push_nth_default. Lemma nth_default_carry : forall i us, length us = length limb_widths -> (i < length us)%nat -> nth_default 0 (ModularBaseSystemList.carry i us) i = Z.pow2_mod (nth_default 0 us i) (log_cap i). Proof. intros; autorewrite with push_nth_default natsimplify; break_match; omega. Qed. Hint Rewrite @nth_default_carry using (omega || distr_length; omega) : push_nth_default. Local Notation "u [ i ]" := (nth_default 0 u i). Local Notation "u {{ i }}" := (carry_sequence (make_chain i) u) (at level 30). (* Can't rely on [Reserved Notation]: https://coq.inria.fr/bugs/show_bug.cgi?id=4970 *) Lemma bound_during_first_loop : forall i n us, length us = length limb_widths -> (i <= length limb_widths)%nat -> (forall n, 0 <= nth_default 0 us n < 2 ^ B - if eq_nat_dec n 0 then 0 else ((2 ^ B) >> log_cap (pred n))) -> 0 <= us{{i}}[n] < if eq_nat_dec i 0 then us[n] + 1 else if lt_dec i (length limb_widths) then if lt_dec n i then 2 ^ (log_cap n) else if eq_nat_dec n i then 2 ^ B else us[n] + 1 else if eq_nat_dec n 0 then 2 * 2 ^ limb_widths [n] else 2 ^ limb_widths [n]. Proof. induction i; intros; cbv [ModularBaseSystemList.carry_sequence]. + break_if; try omega. cbv [make_chain fold_right]. split; try omega. apply H1. + replace (make_chain (S i)) with (i :: make_chain i) by reflexivity. rewrite fold_right_cons. autorewrite with push_nth_default natsimplify; rewrite ?Nat.pred_succ; fold (carry_sequence (make_chain i) us); rewrite length_carry_sequence; auto. repeat (break_if; try omega); try solve [rewrite Z.pow2_mod_spec by auto; autorewrite with zsimplify; apply Z.mod_pos_bound; zero_bounds]; pose proof (IHi i us); pose proof (IHi n us); specialize_by assumption; specialize_by ltac:(auto with zarith); repeat break_if; try omega; pose proof c_pos; (split; try solve [zero_bounds]). (* TODO (jadep) : clean up/automate these leftover cases. *) - replace (2 * 2 ^ limb_widths [n]) with (2 ^ limb_widths [n] + 2 ^ limb_widths [n]) by ring. apply Z.add_lt_le_mono; subst n. omega. eapply Z.le_trans; eauto. apply Z.mul_le_mono_nonneg_l; try omega. subst i. apply Z.shiftr_le; auto. apply Z.lt_le_incl. apply H2. - replace (2 ^ B) with ((2 ^ B - ((2 ^ B) >> log_cap i)) + ((2 ^ B) >> log_cap i)) by ring. apply Z.add_lt_le_mono. * eapply Z.le_lt_trans with (m := us [n]); try omega. replace i with (pred n) by omega. eapply Z.lt_le_trans; [ apply H1 | ]. break_if; omega. * apply Z.shiftr_le. auto. apply Z.le_trans with (m := us [i]); [ omega | ]. eapply Z.le_trans. apply Z.lt_le_incl. apply H1. break_if; omega. - replace (2 ^ B) with ((2 ^ B - ((2 ^ B) >> log_cap i)) + ((2 ^ B) >> log_cap i)) by ring. apply Z.add_lt_le_mono. * eapply Z.le_lt_trans with (m := us [n]); try omega. replace i with (pred n) by omega. eapply Z.lt_le_trans; [ apply H1 | ]. break_if; omega. * apply Z.shiftr_le. auto. omega. Qed. Lemma bound_after_first_loop : forall n us, length us = length limb_widths -> (forall n, 0 <= nth_default 0 us n < 2 ^ B - if eq_nat_dec n 0 then 0 else ((2 ^ B) >> log_cap (pred n))) -> 0 <= (ModularBaseSystemList.carry_full us)[n] < if eq_nat_dec n 0 then 2 * 2 ^ limb_widths [n] else 2 ^ limb_widths [n]. Proof. cbv [ModularBaseSystemList.carry_full full_carry_chain]; intros. pose proof (bound_during_first_loop (length limb_widths) n us). specialize_by eauto. repeat (break_if; try omega). Qed. (* TODO(jadep): - Proof of bound after 3 loops - Proof of correctness for [ge_modulus] and [cond_subtract_modulus] - Proof of correctness for [freeze] * freeze us = encode (decode us) * decode us = x -> canonicalized_BSToWord (freeze us)) = FToWord x (where [canonicalized_BSToWord] uses bitwise operations to concatenate digits in BaseSystem in canonical form, splitting along word capacities) *) End CanonicalizationProofs.