Require Import Coq.ZArith.ZArith. Require Import Coq.FSets.FMapPositive. Require Import Coq.Bool.Bool. Require Import Coq.Classes.Morphisms. Require Import Coq.Relations.Relation_Definitions. Require Import Crypto.PreLanguage. Require Import Crypto.Util.Tuple Crypto.Util.Prod Crypto.Util.LetIn. Require Import Crypto.Util.ListUtil Coq.Lists.List Crypto.Util.NatUtil. Require Import Crypto.Util.Option. Require Import Crypto.Util.Prod. Require Import Crypto.Util.ZRange. Require Import Crypto.Util.ZRange.Operations. Require Import Crypto.Util.ZUtil.Definitions. Require Import Crypto.Util.ZUtil.Notations. Require Import Crypto.Util.CPSNotations. Require Import Crypto.Util.Bool.Reflect. Require Import Crypto.Util.Notations. Require Import Crypto.Util.Tactics.RunTacticAsConstr. Require Import Crypto.Util.Tactics.DebugPrint. Require Import Crypto.Util.Tactics.ConstrFail. Import Coq.Lists.List ListNotations. Local Open Scope bool_scope. Local Open Scope Z_scope. Export PreLanguage. Module Compilers. Export PreLanguage. Local Set Boolean Equality Schemes. Local Set Decidable Equality Schemes. Module Reify. (** Change this with [Ltac reify_debug_level ::= constr:(1).] to get more debugging. *) Ltac debug_level := constr:(0%nat). Tactic Notation "debug_enter_reify_idtac" ident(funname) uconstr(e) := idtac funname ": Attempting to reify:" e. Tactic Notation "debug_leave_reify_success_idtac" ident(funname) uconstr(e) uconstr(ret) := idtac funname ": Success in reifying:" e "as" ret. Tactic Notation "debug_leave_reify_failure_idtac" ident(funname) uconstr(e) := idtac funname ": Failure in reifying:" e. Ltac check_debug_level_then_Set _ := let lvl := debug_level in lazymatch type of lvl with | nat => constr:(Set) | ?T => constr_run_tac ltac:(fun _ => idtac "Error: debug_level should have type nat but instead has type" T) end. Ltac debug0 tac := constr_run_tac tac. Ltac debug1 tac := let lvl := debug_level in lazymatch lvl with | S _ => constr_run_tac tac | _ => check_debug_level_then_Set () end. Ltac debug2 tac := let lvl := debug_level in lazymatch lvl with | S (S _) => constr_run_tac tac | _ => check_debug_level_then_Set () end. Ltac debug3 tac := let lvl := debug_level in lazymatch lvl with | S (S (S _)) => constr_run_tac tac | _ => check_debug_level_then_Set () end. Ltac debug_enter_reify_base_type e := debug2 ltac:(fun _ => debug_enter_reify_idtac reify_base_type e). Ltac debug_enter_reify_type e := debug2 ltac:(fun _ => debug_enter_reify_idtac reify_type e). Ltac debug_enter_reify_in_context e := debug2 ltac:(fun _ => debug_enter_reify_idtac reify_in_context e). Ltac debug_leave_reify_in_context_success e ret := debug3 ltac:(fun _ => debug_leave_reify_success_idtac reify_in_context e ret). Ltac debug_leave_reify_in_context_failure e := let dummy := debug0 ltac:(fun _ => debug_leave_reify_failure_idtac reify_in_context e) in constr_fail. Ltac debug_leave_reify_base_type_failure e := let dummy := debug0 ltac:(fun _ => debug_leave_reify_failure_idtac reify_base_type e) in constr_fail. Tactic Notation "idtac_reify_in_context_case" ident(case) := idtac "reify_in_context:" case. Ltac debug_reify_in_context_case tac := debug3 tac. Ltac debug_enter_reify_abs e := debug2 ltac:(fun _ => debug_enter_reify_idtac reify_abs e). End Reify. Module type. Inductive type {base_type : Type} := base (t : base_type) | arrow (s d : type). Global Arguments type : clear implicits. Global Instance reflect_type_beq {base_type} {base_beq} {reflect_base_beq : reflect_rel (@eq base_type) base_beq} : reflect_rel (@eq (type base_type)) (@type_beq base_type base_beq) | 10. Proof. apply reflect_of_beq; (apply internal_type_dec_bl + apply internal_type_dec_lb); apply reflect_to_beq; assumption. Defined. Fixpoint final_codomain {base_type} (t : type base_type) : base_type := match t with | base t => t | arrow s d => @final_codomain base_type d end. Fixpoint uncurried_domain {base_type} prod s (t : type base_type) : type base_type := match t with | base t => s | arrow s' d => @uncurried_domain base_type prod (prod s s') d end. Fixpoint for_each_lhs_of_arrow {base_type} (f : type base_type -> Type) (t : type base_type) : Type := match t with | base t => unit | arrow s d => f s * @for_each_lhs_of_arrow _ f d end. Fixpoint andb_each_lhs_of_arrow {base_type} (f : type base_type -> bool) (t : type base_type) : bool := match t with | base t => true | arrow s d => andb (f s) (@andb_each_lhs_of_arrow _ f d) end. (** Denote [type]s into their interpretation in [Type]/[Set] *) Fixpoint interp {base_type} (base_interp : base_type -> Type) (t : type base_type) : Type := match t with | base t => base_interp t | arrow s d => @interp _ base_interp s -> @interp _ base_interp d end. Fixpoint related {base_type} {base_interp : base_type -> Type} (R : forall t, relation (base_interp t)) {t : type base_type} : relation (interp base_interp t) := match t with | base t => R t | arrow s d => @related _ _ R s ==> @related _ _ R d end%signature. Notation eqv := (@related _ _ (fun _ => eq)). Fixpoint related_hetero {base_type} {base_interp1 base_interp2 : base_type -> Type} (R : forall t, base_interp1 t -> base_interp2 t -> Prop) {t : type base_type} : interp base_interp1 t -> interp base_interp2 t -> Prop := match t with | base t => R t | arrow s d => respectful_hetero _ _ _ _ (@related_hetero _ _ _ R s) (fun _ _ => @related_hetero _ _ _ R d) end%signature. Fixpoint related_hetero3 {base_type} {base_interp1 base_interp2 base_interp3 : base_type -> Type} (R : forall t, base_interp1 t -> base_interp2 t -> base_interp3 t -> Prop) {t : type base_type} : interp base_interp1 t -> interp base_interp2 t -> interp base_interp3 t -> Prop := match t with | base t => R t | arrow s d => fun f g h => forall x y z, @related_hetero3 _ _ _ _ R s x y z -> @related_hetero3 _ _ _ _ R d (f x) (g y) (h z) end. Fixpoint app_curried {base_type} {f : base_type -> Type} {t : type base_type} : interp f t -> for_each_lhs_of_arrow (interp f) t -> f (final_codomain t) := match t with | base t => fun v _ => v | arrow s d => fun F x_xs => @app_curried _ f d (F (fst x_xs)) (snd x_xs) end. Fixpoint app_curried_gen {base_type} {f : type base_type -> Type} (app : forall s d, f (arrow s d) -> f s -> f d) {t : type base_type} : f t -> for_each_lhs_of_arrow f t -> f (base (final_codomain t)) := match t with | base t => fun v _ => v | arrow s d => fun F x_xs => @app_curried_gen _ f app d (app _ _ F (fst x_xs)) (snd x_xs) end. Fixpoint map_for_each_lhs_of_arrow {base_type} {f g : type base_type -> Type} (F : forall t, f t -> g t) {t} : for_each_lhs_of_arrow f t -> for_each_lhs_of_arrow g t := match t with | base t => fun 'tt => tt | arrow s d => fun '(x, xs) => (F s x, @map_for_each_lhs_of_arrow _ f g F d xs) end. Fixpoint andb_bool_for_each_lhs_of_arrow {base_type} {f g : type base_type -> Type} (R : forall t, f t -> g t -> bool) {t} : for_each_lhs_of_arrow f t -> for_each_lhs_of_arrow g t -> bool := match t with | base t => fun _ _ => true | arrow s d => fun x_xs y_ys => R s (fst x_xs) (fst y_ys) && @andb_bool_for_each_lhs_of_arrow _ f g R d (snd x_xs) (snd y_ys) end%bool. Fixpoint and_for_each_lhs_of_arrow {base_type} {f g : type base_type -> Type} (R : forall t, f t -> g t -> Prop) {t} : for_each_lhs_of_arrow f t -> for_each_lhs_of_arrow g t -> Prop := match t with | base t => fun _ _ => True | arrow s d => fun x_xs y_ys => R s (fst x_xs) (fst y_ys) /\ @and_for_each_lhs_of_arrow _ f g R d (snd x_xs) (snd y_ys) end. Definition is_base {base_type} (t : type base_type) : bool := match t with | type.base _ => true | type.arrow _ _ => false end. Definition is_not_higher_order {base_type} : type base_type -> bool := andb_each_lhs_of_arrow is_base. Section interpM. Context {base_type} (M : Type -> Type) (base_interp : base_type -> Type). (** half-monadic denotation function; denote [type]s into their interpretation in [Type]/[Set], wrapping the codomain of any arrow in [M]. *) Fixpoint interpM (t : type base_type) : Type := match t with | base t => base_interp t | arrow s d => @interpM s -> M (@interpM d) end. Fixpoint interpM_final' (withM : bool) (t : type base_type) := match t with | base t => if withM then M (base_interp t) else base_interp t | arrow s d => interpM_final' false s -> interpM_final' true d end. Definition interpM_final := interpM_final' true. Fixpoint interpM_return (t : type base_type) : M (base_interp (final_codomain t)) -> interpM_final t := match t with | base t => fun v => v | arrow s d => fun v _ => @interpM_return d v end. End interpM. Definition domain {base_type} (default : base_type) (t : type base_type) : type base_type := match t with | arrow s d => s | base _ => base default end. Definition codomain {base_type} (t : type base_type) : type base_type := match t with | arrow s d => d | t => t end. Section transport_cps. Context {base_type} (try_make_transport_base_type_cps : forall (P : base_type -> Type) t1 t2, ~> option (P t1 -> P t2)). Fixpoint try_make_transport_cps (P : type base_type -> Type) (t1 t2 : type base_type) : ~> option (P t1 -> P t2) := match t1, t2 with | base t1, base t2 => try_make_transport_base_type_cps (fun t => P (base t)) t1 t2 | arrow s1 d1, arrow s2 d2 => (trs <-- try_make_transport_cps (fun s => P (arrow s _)) _ _; trd <-- try_make_transport_cps (fun d => P (arrow _ d)) _ _; return (Some (fun v => trd (trs v)))) | base _, _ | arrow _ _, _ => (return None) end%cps. Definition try_transport_cps (P : type base_type -> Type) (t1 t2 : type base_type) (v : P t1) : ~> option (P t2) := (tr <-- try_make_transport_cps P t1 t2; return (Some (tr v)))%cps. Definition try_transport (P : type base_type -> Type) (t1 t2 : type base_type) (v : P t1) : option (P t2) := try_transport_cps P t1 t2 v _ id. End transport_cps. (* Fixpoint try_transport {base_type} (try_transport_base_type : forall (P : base_type -> Type) t1 t2, P t1 -> option (P t2)) (P : type base_type -> Type) (t1 t2 : type base_type) : P t1 -> option (P t2) := match t1, t2 return P t1 -> option (P t2) with | base t1, base t2 => try_transport_base_type (fun t => P (base t)) t1 t2 | arrow s d, arrow s' d' => fun v => (v <- (try_transport try_transport_base_type (fun s => P (arrow s d)) s s' v); (try_transport try_transport_base_type (fun d => P (arrow s' d)) d d' v))%option | base _, _ | arrow _ _, _ => fun _ => None end. *) Ltac reify base_reify base_type ty := let __ := Reify.debug_enter_reify_type ty in let reify_rec t := reify base_reify base_type t in lazymatch eval cbv beta in ty with | ?A -> ?B => let rA := reify_rec A in let rB := reify_rec B in constr:(@arrow base_type rA rB) | @interp _ _ ?T => T | _ => let rt := base_reify ty in constr:(@base base_type rt) end. End type. Notation type := type.type. Delimit Scope etype_scope with etype. Bind Scope etype_scope with type.type. Infix "->" := type.arrow : etype_scope. Infix "==" := type.eqv : type_scope. Module base. Local Notation einterp := type.interp. Module type. Inductive base := unit | Z | bool | nat | zrange. (* Not Variant because COQBUG(https://github.com/coq/coq/issues/7738) *) Inductive type := type_base (t : base) | prod (A B : type) | list (A : type) | option (A : type). Global Coercion type_base : base >-> type. End type. Global Coercion type.type_base : type.base >-> type.type. Notation type := type.type. Global Instance reflect_base_beq : reflect_rel (@eq type.base) type.base_beq | 10 := reflect_of_beq type.internal_base_dec_bl type.internal_base_dec_lb. Global Instance reflect_type_beq : reflect_rel (@eq type) type.type_beq | 10 := reflect_of_beq type.internal_type_dec_bl type.internal_type_dec_lb. Definition base_interp (ty : type.base) := match ty with | type.unit => Datatypes.unit | type.Z => BinInt.Z | type.bool => Datatypes.bool | type.nat => Datatypes.nat | type.zrange => zrange end. Fixpoint interp (ty : type) := match ty with | type.type_base t => base_interp t | type.prod A B => interp A * interp B | type.list A => Datatypes.list (interp A) | type.option A => Datatypes.option (interp A) end%type. Fixpoint base_interp_beq {t} : base_interp t -> base_interp t -> bool := match t with | type.unit => fun _ _ => true | type.Z => Z.eqb | type.bool => Bool.eqb | type.nat => Nat.eqb | type.zrange => zrange_beq end. Global Instance reflect_base_interp_eq {t} : reflect_rel (@eq (base_interp t)) (@base_interp_beq t) | 10. Proof. induction t; cbn [base_interp base_interp_beq]; eauto with typeclass_instances. Qed. Fixpoint interp_beq {t} : interp t -> interp t -> bool := match t with | type.type_base t => @base_interp_beq t | type.prod A B => prod_beq _ _ (@interp_beq A) (@interp_beq B) | type.list A => list_beq _ (@interp_beq A) | type.option A => option_beq (@interp_beq A) end. Global Instance reflect_interp_eq {t} : reflect_rel (@eq (interp t)) (@interp_beq t) | 10. Proof. induction t; cbn [interp interp_beq]; eauto with typeclass_instances. Qed. Definition try_make_base_transport_cps (P : type.base -> Type) (t1 t2 : type.base) : ~> option (P t1 -> P t2) := match t1, t2 with | type.unit, type.unit | type.Z, type.Z | type.bool, type.bool | type.nat, type.nat | type.zrange, type.zrange => (return (Some id)) | type.unit, _ | type.Z, _ | type.bool, _ | type.nat, _ | type.zrange, _ => (return None) end%cps. Fixpoint try_make_transport_cps (P : type -> Type) (t1 t2 : type) : ~> option (P t1 -> P t2) := match t1, t2 with | type.type_base t1, type.type_base t2 => try_make_base_transport_cps (fun t => P (type.type_base t)) t1 t2 | type.prod A B, type.prod A' B' => (trA <-- try_make_transport_cps (fun A => P (type.prod A _)) _ _; trB <-- try_make_transport_cps (fun B => P (type.prod _ B)) _ _; return (Some (fun v => trB (trA v)))) | type.list A, type.list A' => try_make_transport_cps (fun A => P (type.list A)) A A' | type.option A, type.option A' => try_make_transport_cps (fun A => P (type.option A)) A A' | type.type_base _, _ | type.prod _ _, _ | type.list _, _ | type.option _, _ => (return None) end%cps. Definition try_transport_cps (P : type -> Type) (t1 t2 : type) (v : P t1) : ~> option (P t2) := (tr <-- try_make_transport_cps P t1 t2; return (Some (tr v)))%cps. Definition try_transport (P : type -> Type) (t1 t2 : type) (v : P t1) : option (P t2) := try_transport_cps P t1 t2 v _ id. Ltac reify_base ty := let __ := Reify.debug_enter_reify_base_type ty in lazymatch eval cbv beta in ty with | Datatypes.unit => type.unit | Datatypes.nat => type.nat | Datatypes.bool => type.bool | BinInt.Z => type.Z | zrange => type.zrange | interp (type.type_base ?T) => T | @einterp type interp (@Compilers.type.base type (type.type_base ?T)) => T | _ => constr_fail_with ltac:(fun _ => fail 1 "Unrecognized type:" ty) end. Ltac reify ty := let __ := Reify.debug_enter_reify_base_type ty in lazymatch eval cbv beta in ty with | Datatypes.prod ?A ?B => let rA := reify A in let rB := reify B in constr:(type.prod rA rB) | Datatypes.list ?T => let rT := reify T in constr:(type.list rT) | Datatypes.option ?T => let rT := reify T in constr:(type.option rT) | interp ?T => T | @einterp type interp (@Compilers.type.base type ?T) => T | ?ty => let rT := reify_base ty in constr:(@type.type_base rT) end. Notation reify_base t := (ltac:(let rt := reify_base t in exact rt)) (only parsing). Notation reify t := (ltac:(let rt := reify t in exact rt)) (only parsing). Notation reify_norm_base t := (ltac:(let t' := eval cbv in t in let rt := reify_base t' in exact rt)) (only parsing). Notation reify_norm t := (ltac:(let t' := eval cbv in t in let rt := reify t' in exact rt)) (only parsing). Notation reify_base_type_of e := (reify_base ((fun t (_ : t) => t) _ e)) (only parsing). Notation reify_type_of e := (reify ((fun t (_ : t) => t) _ e)) (only parsing). Notation reify_norm_base_type_of e := (reify_norm_base ((fun t (_ : t) => t) _ e)) (only parsing). Notation reify_norm_type_of e := (reify_norm ((fun t (_ : t) => t) _ e)) (only parsing). End base. Global Coercion base.type.type_base : base.type.base >-> base.type.type. Bind Scope etype_scope with base.type. Infix "*" := base.type.prod : etype_scope. Notation "()" := (base.type.type_base base.type.unit) : etype_scope. Module expr. Section with_var. Context {base_type : Type}. Local Notation type := (type base_type). Context {ident : type -> Type} {var : type -> Type}. Inductive expr : type -> Type := | Ident {t} (idc : ident t) : expr t | Var {t} (v : var t) : expr t | Abs {s d} (f : var s -> expr d) : expr (s -> d) | App {s d} (f : expr (s -> d)) (x : expr s) : expr d | LetIn {A B} (x : expr A) (f : var A -> expr B) : expr B . End with_var. Fixpoint interp {base_type ident} {interp_base_type : base_type -> Type} (interp_ident : forall t, ident t -> type.interp interp_base_type t) {t} (e : @expr base_type ident (type.interp interp_base_type) t) : type.interp interp_base_type t := match e in expr t return type.interp _ t with | Ident t idc => interp_ident _ idc | Var t v => v | Abs s d f => fun x : type.interp interp_base_type s => @interp _ _ _ interp_ident _ (f x) | App s d f x => (@interp _ _ _ interp_ident _ f) (@interp _ _ _ interp_ident _ x) | LetIn A B x f => dlet y := @interp _ _ _ interp_ident _ x in @interp _ _ _ interp_ident _ (f y) end. Section with_interp. Context {base_type : Type} {ident : type base_type -> Type} {interp_base_type : base_type -> Type} (interp_ident : forall t, ident t -> type.interp interp_base_type t). Fixpoint interp_related_gen {var : type base_type -> Type} (R : forall t, var t -> type.interp interp_base_type t -> Prop) {t} (e : @expr base_type ident var t) : type.interp interp_base_type t -> Prop := match e in expr t return type.interp interp_base_type t -> Prop with | expr.Var t v1 => R t v1 | expr.App s d f x => fun v2 => exists fv xv, @interp_related_gen var R _ f fv /\ @interp_related_gen var R _ x xv /\ fv xv = v2 | expr.Ident t idc => fun v2 => interp_ident _ idc == v2 | expr.Abs s d f1 => fun f2 => forall x1 x2, R _ x1 x2 -> @interp_related_gen var R d (f1 x1) (f2 x2) | expr.LetIn s d x f (* combine the App rule with the Abs rule *) => fun v2 => exists fv xv, @interp_related_gen var R _ x xv /\ (forall x1 x2, R _ x1 x2 -> @interp_related_gen var R d (f x1) (fv x2)) /\ fv xv = v2 end. Definition interp_related {t} (e : @expr base_type ident (type.interp interp_base_type) t) : type.interp interp_base_type t -> Prop := @interp_related_gen (type.interp interp_base_type) (@type.eqv) t e. End with_interp. Definition Expr {base_type ident} t := forall var, @expr base_type ident var t. Definition APP {base_type ident s d} (f : Expr (s -> d)) (x : Expr s) : Expr d := fun var => @App base_type ident var s d (f var) (x var). Definition Interp {base_type ident interp_base_type} interp_ident {t} (e : @Expr base_type ident t) : type.interp interp_base_type t := @interp base_type ident interp_base_type interp_ident t (e _). (** [Interp (APP _ _)] is the same thing as Gallina application of the [Interp]retations of the two arguments to [APP]. *) Definition Interp_APP {base_type ident interp_base_type interp_ident} {s d} (f : @Expr base_type ident (s -> d)) (x : @Expr base_type ident s) : @Interp base_type ident interp_base_type interp_ident _ (APP f x) = Interp interp_ident f (Interp interp_ident x) := eq_refl. (** Same as [Interp_APP], but for any reflexive relation, not just [eq] *) Definition Interp_APP_rel_reflexive {base_type ident interp_base_type interp_ident} {s d} {R} {H:Reflexive R} (f : @Expr base_type ident (s -> d)) (x : @Expr base_type ident s) : R (@Interp base_type ident interp_base_type interp_ident _ (APP f x)) (Interp interp_ident f (Interp interp_ident x)) := H _. Module var_context. Inductive list {base_type} {var : type base_type -> Type} := | nil | cons {T t} (gallina_v : T) (v : var t) (ctx : list). End var_context. (* cf COQBUG(https://github.com/coq/coq/issues/5448) , COQBUG(https://github.com/coq/coq/issues/6315) , COQBUG(https://github.com/coq/coq/issues/6559) , COQBUG(https://github.com/coq/coq/issues/6534) , https://github.com/mit-plv/fiat-crypto/issues/320 *) Ltac require_same_var n1 n2 := (*idtac n1 n2;*) let c1 := constr:(fun n1 n2 : Set => ltac:(exact n1)) in let c2 := constr:(fun n1 n2 : Set => ltac:(exact n2)) in (*idtac c1 c2;*) first [ constr_eq c1 c2 | fail 1 "Not the same var:" n1 "and" n2 "(via constr_eq" c1 c2 ")" ]. Ltac is_same_var n1 n2 := match goal with | _ => let check := match goal with _ => require_same_var n1 n2 end in true | _ => false end. Ltac is_underscore v := let v' := fresh v in let v' := fresh v' in is_same_var v v'. Ltac refresh n fresh_tac := let n_is_underscore := is_underscore n in let n' := lazymatch n_is_underscore with | true => fresh | false => fresh_tac n end in let n' := fresh_tac n' in n'. Ltac type_of_first_argument_of f := let f_ty := type of f in lazymatch eval hnf in f_ty with | forall x : ?T, _ => T end. (** Forms of abstraction in Gallina that our reflective language cannot handle get handled by specializing the code "template" to each particular application of that abstraction. In particular, type arguments (nat, Z, (λ _, nat), etc) get substituted into lambdas and treated as a integral part of primitive operations (such as [@List.app T], [@list_rect (λ _, nat)]). During reification, we accumulate them in a right-associated tuple, using [tt] as the "nil" base case. When we hit a λ or an identifier, we plug in the template parameters as necessary. *) Ltac require_template_parameter parameter_type := first [ unify parameter_type Prop | unify parameter_type Set | unify parameter_type Type | lazymatch eval hnf in parameter_type with | forall x : ?T, @?P x => let check := constr:(fun x : T => ltac:(require_template_parameter (P x); exact I)) in idtac end ]. Ltac is_template_parameter parameter_type := is_success_run_tactic ltac:(fun _ => require_template_parameter parameter_type). Ltac plug_template_ctx f template_ctx := lazymatch template_ctx with | tt => f | (?arg, ?template_ctx') => let T := type_of_first_argument_of f in let x_is_template_parameter := is_template_parameter T in lazymatch x_is_template_parameter with | true => plug_template_ctx (f arg) template_ctx' | false => constr:(fun x : T => ltac:(let v := plug_template_ctx (f x) template_ctx in exact v)) end end. Ltac reify_in_context base_type ident reify_base_type reify_ident var term value_ctx template_ctx := let reify_rec_gen term value_ctx template_ctx := reify_in_context base_type ident reify_base_type reify_ident var term value_ctx template_ctx in let reify_rec term := reify_rec_gen term value_ctx template_ctx in let reify_rec_not_head term := reify_rec_gen term value_ctx tt in let do_reify_ident term else_tac := reify_ident term ltac:(fun idc => constr:(@Ident base_type ident var _ idc)) reify_rec else_tac in let __ := Reify.debug_enter_reify_in_context term in lazymatch value_ctx with | context[@var_context.cons _ _ ?T ?rT term ?v _] => constr:(@Var base_type ident var rT v) | _ => lazymatch term with | match ?b with true => ?t | false => ?f end => let T := type of term in reify_rec (@bool_rect (fun _ => T) t f b) | match ?x with Datatypes.pair a b => @?f a b end => let T := type of term in reify_rec (@prod_rect _ _ (fun _ => T) f x) | match ?x with ZRange.Build_zrange a b => @?f a b end => let T := type of term in reify_rec (@ZRange.zrange_rect (fun _ => T) f x) | match ?x with nil => ?N | cons a b => @?C a b end => let T := type of term in reify_rec (@list_case _ (fun _ => T) N C x) | let x := ?a in ?b => let A := type of a in let T := type of term in let rec_val := match constr:(Set) with | _ => let v := constr:((fun x : A => b) a) in let __ := type of v in (* ensure that the abstraction is well-typed, i.e., that we're not relying on the value of the let to well-type the body *) v | _ => constr:(match a return T with x => b end) (* if we do rely on the body of [x] to well-type [b], then just inline it *) end in (*let B := lazymatch type of b with forall x, @?B x => B end in*) reify_rec rec_val (*(@Let_In A B a b)*) | @Let_In ?A ?B ?a ?b => let ra := reify_rec a in let rb := reify_rec b in lazymatch rb with | @Abs _ _ _ ?s ?d ?f => constr:(@LetIn base_type ident var s d ra f) | ?rb => constr_fail_with ltac:(fun _ => fail 1 "Invalid non-Abs function reification of" b "to" rb) end | (fun x : ?T => ?f) => let x_is_template_parameter := is_template_parameter T in lazymatch x_is_template_parameter with | true => lazymatch template_ctx with | (?arg, ?template_ctx) => (* we pull a trick with [match] to plug in [arg] without running cbv β *) lazymatch type of term with | forall y, ?P => reify_rec_gen (match arg as y return P with x => f end) value_ctx template_ctx end end | false => let rT := type.reify reify_base_type base_type T in let not_x := fresh (* could be [refresh x ltac:(fun n => fresh n)] in 8.8; c.f. https://github.com/mit-plv/fiat-crypto/issues/320 and probably COQBUG(https://github.com/coq/coq/issues/6534) *) in let not_x2 := fresh (* could be [refresh not_x ltac:(fun n => fresh n)] in 8.8; c.f. https://github.com/mit-plv/fiat-crypto/issues/320 and probably COQBUG(https://github.com/coq/coq/issues/6534) *) in let not_x3 := fresh (* could be [refresh not_x2 ltac:(fun n => fresh n)] in 8.8; c.f. https://github.com/mit-plv/fiat-crypto/issues/320 and probably COQBUG(https://github.com/coq/coq/issues/6534) *) in (*let __ := match goal with _ => idtac "reify_in_context: λ case:" term "using vars:" not_x not_x2 not_x3 end in*) let rf0 := constr:( fun (x : T) (not_x : var rT) => match f, @var_context.cons base_type var T rT x not_x value_ctx return _ with (* c.f. COQBUG(https://github.com/coq/coq/issues/6252#issuecomment-347041995) for [return _] *) | not_x2, not_x3 => ltac:( let f := (eval cbv delta [not_x2] in not_x2) in let var_ctx := (eval cbv delta [not_x3] in not_x3) in (*idtac "rec call" f "was" term;*) let rf := reify_rec_gen f var_ctx template_ctx in exact rf) end) in lazymatch rf0 with | (fun _ => ?rf) => constr:(@Abs base_type ident var rT _ rf) | _ => (* This will happen if the reified term still mentions the non-var variable. By chance, [cbv delta] strips type casts, which are only places that I can think of where such dependency might remain. However, if this does come up, having a distinctive error message is much more useful for debugging than the generic "no matching clause" *) constr_fail_with ltac:(fun _ => fail 1 "Failure to eliminate functional dependencies of" rf0) end end | _ => do_reify_ident term ltac:( fun _ => lazymatch term with | ?f ?x => let ty := type_of_first_argument_of f in let x_is_template_parameter := is_template_parameter ty in lazymatch x_is_template_parameter with | true => (* we can't reify things of type [Type], so we save it for later to plug in *) reify_rec_gen f value_ctx (x, template_ctx) | false => let rx := reify_rec_gen x value_ctx tt in let rf := reify_rec_gen f value_ctx template_ctx in constr:(App (base_type:=base_type) (ident:=ident) (var:=var) rf rx) end | _ => let term' := plug_template_ctx term template_ctx in do_reify_ident term' ltac:(fun _ => (*let __ := match goal with _ => idtac "Attempting to unfold" term end in*) let term := match constr:(Set) with | _ => (eval cbv delta [term] in term) (* might fail, so we wrap it in a match to give better error messages *) | _ => let __ := match goal with | _ => fail 2 "Unrecognized term:" term' end in constr_fail end in match constr:(Set) with | _ => reify_rec term | _ => let __ := match goal with | _ => idtac "Error: Failed to reify" term' "via unfolding"; fail 2 "Failed to reify" term' "via unfolding" end in constr_fail end) end) end end. Ltac reify base_type ident reify_base_type reify_ident var term := reify_in_context base_type ident reify_base_type reify_ident var term (@var_context.nil base_type var) tt. Ltac Reify base_type ident reify_base_type reify_ident term := constr:(fun var : type base_type -> Type => ltac:(let r := reify base_type ident reify_base_type reify_ident var term in exact r)). Ltac Reify_rhs base_type ident reify_base_type reify_ident base_interp interp_ident _ := let RHS := lazymatch goal with |- _ = ?RHS => RHS end in let R := Reify base_type ident reify_base_type reify_ident RHS in transitivity (@Interp base_type ident base_interp interp_ident _ R); [ | reflexivity ]. Module Export Notations. Delimit Scope expr_scope with expr. Delimit Scope Expr_scope with Expr. Delimit Scope expr_pat_scope with expr_pat. Bind Scope expr_scope with expr. Bind Scope Expr_scope with Expr. Infix "@" := App : expr_scope. Infix "@" := APP : Expr_scope. Notation "\ x .. y , f" := (Abs (fun x => .. (Abs (fun y => f%expr)) .. )) : expr_scope. Notation "'λ' x .. y , f" := (Abs (fun x => .. (Abs (fun y => f%expr)) .. )) : expr_scope. Notation "'expr_let' x := A 'in' b" := (LetIn A (fun x => b%expr)) : expr_scope. Notation "'$' x" := (Var x) (at level 10, format "'$' x") : expr_scope. Notation "### x" := (Ident x) : expr_scope. End Notations. End expr. Export expr.Notations. Notation expr := expr.expr. Module ident. Local Notation type := (type base.type). Local Notation ttype := type. Module fancy. Section with_base. Let type_base (x : base.type) : type := type.base x. Local Coercion type_base : base.type >-> type. Section with_scope. Import base.type. Notation type := ttype. Inductive ident_with_wordmax {log2wordmax : BinInt.Z} : base.type -> base.type -> Set := | add (imm : BinInt.Z) : ident_with_wordmax (Z * Z) (Z * Z) | addc (imm : BinInt.Z) : ident_with_wordmax (Z * Z * Z) (Z * Z) | sub (imm : BinInt.Z) : ident_with_wordmax (Z * Z) (Z * Z) | subb (imm : BinInt.Z) : ident_with_wordmax (Z * Z * Z) (Z * Z) | mulll : ident_with_wordmax (Z * Z) Z | mullh : ident_with_wordmax (Z * Z) Z | mulhl : ident_with_wordmax (Z * Z) Z | mulhh : ident_with_wordmax (Z * Z) Z | selm : ident_with_wordmax (Z * Z * Z) Z | rshi : BinInt.Z -> ident_with_wordmax (Z * Z) Z . Inductive ident : base.type -> base.type -> Set := | with_wordmax (log2wordmax : BinInt.Z) {s d} (idc : @ident_with_wordmax log2wordmax s d) : ident s d | selc : ident (Z * Z * Z) Z | sell : ident (Z * Z * Z) Z | addm : ident (Z * Z * Z) Z . Section interp_with_wordmax. Context (log2wordmax : BinInt.Z). Let wordmax := 2 ^ log2wordmax. Let half_bits := log2wordmax / 2. Let wordmax_half_bits := 2 ^ half_bits. Local Notation low x := (Z.land x (wordmax_half_bits - 1)). Local Notation high x := (x >> half_bits). Local Notation shift x imm := ((x << imm) mod wordmax). Definition interp_with_wordmax {s d} (idc : @ident_with_wordmax log2wordmax s d) : base.interp s -> base.interp d := match idc with | add imm => fun x => Z.add_get_carry_full wordmax (fst x) (shift (snd x) imm) | addc imm => fun x => Z.add_with_get_carry_full wordmax (fst (fst x)) (snd (fst x)) (shift (snd x) imm) | sub imm => fun x => Z.sub_get_borrow_full wordmax (fst x) (shift (snd x) imm) | subb imm => fun x => Z.sub_with_get_borrow_full wordmax (fst (fst x)) (snd (fst x)) (shift (snd x) imm) | mulll => fun x => low (fst x) * low (snd x) | mullh => fun x => low (fst x) * high (snd x) | mulhl => fun x => high (fst x) * low (snd x) | mulhh => fun x => high (fst x) * high (snd x) | rshi n => fun x => Z.rshi wordmax (fst x) (snd x) n | selm => fun x => Z.zselect (Z.cc_m wordmax (fst (fst x))) (snd (fst x)) (snd x) end. End interp_with_wordmax. Definition interp {s d} (idc : @ident s d) : base.interp s -> base.interp d := match idc with | with_wordmax lwm s d idc => interp_with_wordmax lwm idc | selc => fun x => Z.zselect (fst (fst x)) (snd (fst x)) (snd x) | sell => fun x => Z.zselect (Z.land (fst (fst x)) 1) (snd (fst x)) (snd x) | addm => fun x => Z.add_modulo (fst (fst x)) (snd (fst x)) (snd x) end. End with_scope. End with_base. Global Coercion with_wordmax : ident_with_wordmax >-> ident. Global Arguments interp_with_wordmax {_ s d} idc. Global Arguments interp {s d} idc. End fancy. Section with_base. Let type_base (x : base.type) : type := type.base x. Local Coercion type_base : base.type >-> type. Section with_scope. Import base.type. Notation type := ttype. (* N.B. [ident] must have essentially flat structure for the python script constructing [pattern.ident] to work *) Inductive ident : type -> Type := | Literal {t:base.type.base} (v : base.interp t) : ident t | Nat_succ : ident (nat -> nat) | Nat_pred : ident (nat -> nat) | Nat_max : ident (nat -> nat -> nat) | Nat_mul : ident (nat -> nat -> nat) | Nat_add : ident (nat -> nat -> nat) | Nat_sub : ident (nat -> nat -> nat) | Nat_eqb : ident (nat -> nat -> bool) | nil {t} : ident (list t) | cons {t:base.type} : ident (t -> list t -> list t) | pair {A B:base.type} : ident (A -> B -> A * B) | fst {A B} : ident (A * B -> A) | snd {A B} : ident (A * B -> B) | prod_rect {A B T:base.type} : ident ((A -> B -> T) -> A * B -> T) | bool_rect {T:base.type} : ident ((unit -> T) -> (unit -> T) -> bool -> T) | nat_rect {P:base.type} : ident ((unit -> P) -> (nat -> P -> P) -> nat -> P) | nat_rect_arrow {P Q:base.type} : ident ((P -> Q) -> (nat -> (P -> Q) -> (P -> Q)) -> nat -> P -> Q) | eager_nat_rect {P:base.type} : ident ((unit -> P) -> (nat -> P -> P) -> nat -> P) | eager_nat_rect_arrow {P Q:base.type} : ident ((P -> Q) -> (nat -> (P -> Q) -> (P -> Q)) -> nat -> P -> Q) | list_rect {A P:base.type} : ident ((unit -> P) -> (A -> list A -> P -> P) -> list A -> P) | list_rect_arrow {A P Q:base.type} : ident ((P -> Q) -> (A -> list A -> (P -> Q) -> (P -> Q)) -> list A -> P -> Q) | eager_list_rect {A P:base.type} : ident ((unit -> P) -> (A -> list A -> P -> P) -> list A -> P) | eager_list_rect_arrow {A P Q:base.type} : ident ((P -> Q) -> (A -> list A -> (P -> Q) -> (P -> Q)) -> list A -> P -> Q) | list_case {A P:base.type} : ident ((unit -> P) -> (A -> list A -> P) -> list A -> P) | List_length {T} : ident (list T -> nat) | List_seq : ident (nat -> nat -> list nat) | List_firstn {A:base.type} : ident (nat -> list A -> list A) | List_skipn {A:base.type} : ident (nat -> list A -> list A) | List_repeat {A:base.type} : ident (A -> nat -> list A) | List_combine {A B} : ident (list A -> list B -> list (A * B)) | List_map {A B:base.type} : ident ((A -> B) -> list A -> list B) | List_app {A} : ident (list A -> list A -> list A) | List_rev {A} : ident (list A -> list A) | List_flat_map {A B:base.type} : ident ((A -> (list B)) -> list A -> (list B)) | List_partition {A:base.type} : ident ((A -> bool) -> list A -> (list A * list A)) | List_fold_right {A B:base.type} : ident ((B -> A -> A) -> A -> list B -> A) | List_update_nth {T:base.type} : ident (nat -> (T -> T) -> list T -> list T) | List_nth_default {T:base.type} : ident (T -> list T -> nat -> T) | eager_List_nth_default {T:base.type} : ident (T -> list T -> nat -> T) | Z_add : ident (Z -> Z -> Z) | Z_mul : ident (Z -> Z -> Z) | Z_pow : ident (Z -> Z -> Z) | Z_sub : ident (Z -> Z -> Z) | Z_opp : ident (Z -> Z) | Z_div : ident (Z -> Z -> Z) | Z_modulo : ident (Z -> Z -> Z) | Z_log2 : ident (Z -> Z) | Z_log2_up : ident (Z -> Z) | Z_eqb : ident (Z -> Z -> bool) | Z_leb : ident (Z -> Z -> bool) | Z_ltb : ident (Z -> Z -> bool) | Z_geb : ident (Z -> Z -> bool) | Z_gtb : ident (Z -> Z -> bool) | Z_of_nat : ident (nat -> Z) | Z_to_nat : ident (Z -> nat) | Z_shiftr : ident (Z -> Z -> Z) | Z_shiftl : ident (Z -> Z -> Z) | Z_land : ident (Z -> Z -> Z) | Z_lor : ident (Z -> Z -> Z) | Z_min : ident (Z -> Z -> Z) | Z_max : ident (Z -> Z -> Z) | Z_bneg : ident (Z -> Z) | Z_lnot_modulo : ident (Z -> Z -> Z) | Z_mul_split : ident (Z -> Z -> Z -> Z * Z) | Z_add_get_carry : ident (Z -> Z -> Z -> (Z * Z)) | Z_add_with_carry : ident (Z -> Z -> Z -> Z) | Z_add_with_get_carry : ident (Z -> Z -> Z -> Z -> (Z * Z)) | Z_sub_get_borrow : ident (Z -> Z -> Z -> (Z * Z)) | Z_sub_with_get_borrow : ident (Z -> Z -> Z -> Z -> (Z * Z)) | Z_zselect : ident (Z -> Z -> Z -> Z) | Z_add_modulo : ident (Z -> Z -> Z -> Z) | Z_rshi : ident (Z -> Z -> Z -> Z -> Z) | Z_cc_m : ident (Z -> Z -> Z) | Z_combine_at_bitwidth : ident (Z -> Z -> Z -> Z) | Z_cast (range : ZRange.zrange) : ident (Z -> Z) | Z_cast2 (range : ZRange.zrange * ZRange.zrange) : ident ((Z * Z) -> (Z * Z)) | option_Some {A:base.type} : ident (A -> option A) | option_None {A:base.type} : ident (option A) | option_rect {A P : base.type} : ident ((A -> P) -> (unit -> P) -> option A -> P) | Build_zrange : ident (Z -> Z -> zrange) | zrange_rect {P:base.type} : ident ((Z -> Z -> P) -> zrange -> P) | fancy_add (log2wordmax : BinInt.Z) (imm : BinInt.Z) : ident (Z * Z -> Z * Z) | fancy_addc (log2wordmax : BinInt.Z) (imm : BinInt.Z) : ident (Z * Z * Z -> Z * Z) | fancy_sub (log2wordmax : BinInt.Z) (imm : BinInt.Z) : ident (Z * Z -> Z * Z) | fancy_subb (log2wordmax : BinInt.Z) (imm : BinInt.Z) : ident (Z * Z * Z -> Z * Z) | fancy_mulll (log2wordmax : BinInt.Z) : ident (Z * Z -> Z) | fancy_mullh (log2wordmax : BinInt.Z) : ident (Z * Z -> Z) | fancy_mulhl (log2wordmax : BinInt.Z) : ident (Z * Z -> Z) | fancy_mulhh (log2wordmax : BinInt.Z) : ident (Z * Z -> Z) | fancy_rshi (log2wordmax : BinInt.Z) : BinInt.Z -> ident (Z * Z -> Z) | fancy_selc : ident (Z * Z * Z -> Z) | fancy_selm (log2wordmax : BinInt.Z) : ident (Z * Z * Z -> Z) | fancy_sell : ident (Z * Z * Z -> Z) | fancy_addm : ident (Z * Z * Z -> Z) . Notation Some := option_Some. Notation None := option_None. Global Arguments Z_cast2 _%zrange_scope. Definition to_fancy {s d : base.type} (idc : ident (s -> d)) : Datatypes.option (fancy.ident s d) := match idc in ident t return Datatypes.option match t with | type.base s -> type.base d => fancy.ident s d | _ => Datatypes.unit end%etype with | fancy_add log2wordmax imm => Datatypes.Some (fancy.with_wordmax log2wordmax (fancy.add imm)) | fancy_addc log2wordmax imm => Datatypes.Some (fancy.with_wordmax log2wordmax (fancy.addc imm)) | fancy_sub log2wordmax imm => Datatypes.Some (fancy.with_wordmax log2wordmax (fancy.sub imm)) | fancy_subb log2wordmax imm => Datatypes.Some (fancy.with_wordmax log2wordmax (fancy.subb imm)) | fancy_mulll log2wordmax => Datatypes.Some (fancy.with_wordmax log2wordmax fancy.mulll) | fancy_mullh log2wordmax => Datatypes.Some (fancy.with_wordmax log2wordmax fancy.mullh) | fancy_mulhl log2wordmax => Datatypes.Some (fancy.with_wordmax log2wordmax fancy.mulhl) | fancy_mulhh log2wordmax => Datatypes.Some (fancy.with_wordmax log2wordmax fancy.mulhh) | fancy_rshi log2wordmax x => Datatypes.Some (fancy.with_wordmax log2wordmax (fancy.rshi x)) | fancy_selc => Datatypes.Some fancy.selc | fancy_selm log2wordmax => Datatypes.Some (fancy.with_wordmax log2wordmax fancy.selm) | fancy_sell => Datatypes.Some fancy.sell | fancy_addm => Datatypes.Some fancy.addm | _ => Datatypes.None end. Definition of_fancy {s d : base.type} (idc : fancy.ident s d) : ident (s -> d) := match idc in fancy.ident s d return ident (s -> d) with | fancy.with_wordmax log2wordmax s d idc => match idc in fancy.ident_with_wordmax s d return ident (s -> d) with | fancy.add imm => fancy_add log2wordmax imm | fancy.addc imm => fancy_addc log2wordmax imm | fancy.sub imm => fancy_sub log2wordmax imm | fancy.subb imm => fancy_subb log2wordmax imm | fancy.mulll => fancy_mulll log2wordmax | fancy.mullh => fancy_mullh log2wordmax | fancy.mulhl => fancy_mulhl log2wordmax | fancy.mulhh => fancy_mulhh log2wordmax | fancy.selm => fancy_selm log2wordmax | fancy.rshi x => fancy_rshi log2wordmax x end | fancy.selc => fancy_selc | fancy.sell => fancy_sell | fancy.addm => fancy_addm end. End with_scope. Notation Some := option_Some. Notation None := option_None. Section gen. Context (cast_outside_of_range : zrange -> BinInt.Z -> BinInt.Z). Local Notation is_more_pos_than_neg := ident.is_more_pos_than_neg. Local Notation cast := (ident.cast cast_outside_of_range). Local Notation cast2 := (ident.cast2 cast_outside_of_range). Local Notation wordmax log2wordmax := (2 ^ log2wordmax). Local Notation half_bits log2wordmax := (log2wordmax / 2). Local Notation wordmax_half_bits log2wordmax := (2 ^ (half_bits log2wordmax)). Local Notation low log2wordmax x := (Z.land x ((wordmax_half_bits log2wordmax) - 1)). Local Notation high log2wordmax x := (x >> (half_bits log2wordmax)). Local Notation shift log2wordmax x imm := ((x << imm) mod (wordmax log2wordmax)). (** Interpret identifiers where the behavior of [Z_cast] on a value that does not fit in the range is given by a context variable. (This allows us to treat [Z_cast] as "undefined behavior" when the value doesn't fit in the range by quantifying over all possible interpretations. *) Definition gen_interp {t} (idc : ident t) : type.interp base.interp t := match idc in ident t return type.interp base.interp t with | Literal _ v => v | Nat_succ => Nat.succ | Nat_pred => Nat.pred | Nat_max => Nat.max | Nat_mul => Nat.mul | Nat_add => Nat.add | Nat_sub => Nat.sub | Nat_eqb => Nat.eqb | nil t => Datatypes.nil | cons t => Datatypes.cons | pair A B => Datatypes.pair | fst A B => Datatypes.fst | snd A B => Datatypes.snd | prod_rect A B T => fun f '((a, b) : base.interp A * base.interp B) => f a b | bool_rect T => fun t f => Datatypes.bool_rect _ (t tt) (f tt) | nat_rect P | eager_nat_rect P => fun O_case S_case => Datatypes.nat_rect _ (O_case tt) S_case | nat_rect_arrow P Q | eager_nat_rect_arrow P Q => fun O_case S_case => Datatypes.nat_rect _ O_case S_case | list_rect A P | eager_list_rect A P => fun N_case C_case => Datatypes.list_rect _ (N_case tt) C_case | list_rect_arrow A P Q | eager_list_rect_arrow A P Q => fun N_case C_case => Datatypes.list_rect _ N_case C_case | list_case A P => fun N_case C_case => ListUtil.list_case _ (N_case tt) C_case | List_length T => @List.length _ | List_seq => List.seq | List_firstn A => @List.firstn _ | List_skipn A => @List.skipn _ | List_repeat A => @repeat _ | List_combine A B => @List.combine _ _ | List_map A B => @List.map _ _ | List_app A => @List.app _ | List_rev A => @List.rev _ | List_flat_map A B => @List.flat_map _ _ | List_partition A => @List.partition _ | List_fold_right A B => @List.fold_right _ _ | List_update_nth T => update_nth | List_nth_default T => @nth_default _ | eager_List_nth_default T => @nth_default _ | Z_add => Z.add | Z_mul => Z.mul | Z_pow => Z.pow | Z_sub => Z.sub | Z_opp => Z.opp | Z_div => Z.div | Z_modulo => Z.modulo | Z_eqb => Z.eqb | Z_leb => Z.leb | Z_ltb => Z.ltb | Z_geb => Z.geb | Z_gtb => Z.gtb | Z_log2 => Z.log2 | Z_log2_up => Z.log2_up | Z_of_nat => Z.of_nat | Z_to_nat => Z.to_nat | Z_shiftr => Z.shiftr | Z_shiftl => Z.shiftl | Z_land => Z.land | Z_lor => Z.lor | Z_min => Z.min | Z_max => Z.max | Z_mul_split => Z.mul_split | Z_add_get_carry => Z.add_get_carry_full | Z_add_with_carry => Z.add_with_carry | Z_add_with_get_carry => Z.add_with_get_carry_full | Z_sub_get_borrow => Z.sub_get_borrow_full | Z_sub_with_get_borrow => Z.sub_with_get_borrow_full | Z_zselect => Z.zselect | Z_add_modulo => Z.add_modulo | Z_bneg => Z.bneg | Z_lnot_modulo => Z.lnot_modulo | Z_rshi => Z.rshi | Z_cc_m => Z.cc_m | Z_combine_at_bitwidth => Z.combine_at_bitwidth | Z_cast r => cast r | Z_cast2 (r1, r2) => fun '(x1, x2) => (cast r1 x1, cast r2 x2) | Some A => @Datatypes.Some _ | None A => @Datatypes.None _ | option_rect A P => fun S_case N_case o => @Datatypes.option_rect _ _ S_case (N_case tt) o | Build_zrange => ZRange.Build_zrange | zrange_rect A => @ZRange.zrange_rect _ | fancy_add _ _ as idc | fancy_addc _ _ as idc | fancy_sub _ _ as idc | fancy_subb _ _ as idc | fancy_mulll _ as idc | fancy_mullh _ as idc | fancy_mulhl _ as idc | fancy_mulhh _ as idc | fancy_rshi _ _ as idc | fancy_selc as idc | fancy_selm _ as idc | fancy_sell as idc | fancy_addm as idc => fancy.interp (invert_Some (to_fancy idc)) end. End gen. End with_base. Notation Some := option_Some. Notation None := option_None. (** Interpret identifiers where [Z_cast] is an opaque identity function when the value is not inside the range *) Notation interp := (@gen_interp ident.cast_outside_of_range). Notation LiteralUnit := (@Literal base.type.unit). Notation LiteralZ := (@Literal base.type.Z). Notation LiteralBool := (@Literal base.type.bool). Notation LiteralNat := (@Literal base.type.nat). Notation LiteralZRange := (@Literal base.type.zrange). (** TODO: MOVE ME? *) Ltac require_primitive_const term := lazymatch term with | S ?n => require_primitive_const n | O => idtac | true => idtac | false => idtac | tt => idtac | Z0 => idtac | Zpos ?p => require_primitive_const p | Zneg ?p => require_primitive_const p | xI ?p => require_primitive_const p | xO ?p => require_primitive_const p | xH => idtac | Datatypes.Some ?x => require_primitive_const x | Datatypes.None => idtac | ZRange.Build_zrange ?x ?y => require_primitive_const x; require_primitive_const y | ident.literal ?x => idtac | ?term => fail 0 "Not a known const:" term end. Ltac is_primitive_const term := match constr:(Set) with | _ => let check := match goal with | _ => require_primitive_const term end in true | _ => false end. Ltac reify term then_tac reify_rec else_tac := (*let __ := match goal with _ => idtac "attempting to reify_op" term end in*) let term_is_primitive_const := is_primitive_const term in lazymatch term_is_primitive_const with | true => let T := type of term in let rT := base.reify_base T in then_tac (@ident.Literal rT term) | false => lazymatch term with | Nat.succ => then_tac Nat_succ | Nat.add => then_tac Nat_add | Nat.sub => then_tac Nat_sub | Nat.eqb => then_tac Nat_eqb | Nat.mul => then_tac Nat_mul | Nat.max => then_tac Nat_max | Nat.pred => then_tac Nat_pred | S => then_tac Nat_succ | @Datatypes.nil ?T => let rT := base.reify T in then_tac (@ident.nil rT) | @Datatypes.cons ?T => let rT := base.reify T in then_tac (@ident.cons rT) | @Datatypes.fst ?A ?B => let rA := base.reify A in let rB := base.reify B in then_tac (@ident.fst rA rB) | @Datatypes.snd ?A ?B => let rA := base.reify A in let rB := base.reify B in then_tac (@ident.snd rA rB) | @Datatypes.pair ?A ?B => let rA := base.reify A in let rB := base.reify B in then_tac (@ident.pair rA rB) | @Datatypes.bool_rect ?T0 ?Ptrue ?Pfalse => lazymatch (eval cbv beta in T0) with | fun _ => ?T => reify_rec (@ident.Thunked.bool_rect T (fun _ : Datatypes.unit => Ptrue) (fun _ : Datatypes.unit => Pfalse)) | T0 => else_tac () | ?T' => reify_rec (@Datatypes.bool_rect T' Ptrue Pfalse) end | @ident.Thunked.bool_rect ?T => let rT := base.reify T in then_tac (@ident.bool_rect rT) | @Datatypes.option_rect ?A ?T0 ?PSome ?PNone => lazymatch (eval cbv beta in T0) with | fun _ => ?T => reify_rec (@ident.Thunked.option_rect A T PSome (fun _ : Datatypes.unit => PNone)) | T0 => else_tac () | ?T' => reify_rec (@Datatypes.option_rect A T' PSome PNone) end | @ident.Thunked.option_rect ?A ?T => let rA := base.reify A in let rT := base.reify T in then_tac (@ident.option_rect rA rT) | @Datatypes.prod_rect ?A ?B ?T0 => lazymatch (eval cbv beta in T0) with | fun _ => ?T => let rA := base.reify A in let rB := base.reify B in let rT := base.reify T in then_tac (@ident.prod_rect rA rB rT) | T0 => else_tac () | ?T' => reify_rec (@Datatypes.prod_rect A B T') end | @ZRange.zrange_rect ?T0 => lazymatch (eval cbv beta in T0) with | fun _ => ?T => let rT := base.reify T in then_tac (@ident.zrange_rect rT) | T0 => else_tac () | ?T' => reify_rec (@ZRange.zrange_rect T') end | @Datatypes.nat_rect ?T0 ?P0 => lazymatch (eval cbv beta in T0) with | fun _ => _ -> _ => else_tac () | fun _ => ?T => reify_rec (@ident.Thunked.nat_rect T (fun _ : Datatypes.unit => P0)) | T0 => else_tac () | ?T' => reify_rec (@Datatypes.nat_rect T' P0) end | @Datatypes.nat_rect ?T0 => lazymatch (eval cbv beta in T0) with | (fun _ => ?P -> ?Q) => let rP := base.reify P in let rQ := base.reify Q in then_tac (@ident.nat_rect_arrow rP rQ) | T0 => else_tac () | ?T' => reify_rec (@Datatypes.nat_rect T') end | @ident.Thunked.nat_rect ?T => let rT := base.reify T in then_tac (@ident.nat_rect rT) | ident.eagerly (@Datatypes.nat_rect) ?T0 ?P0 => lazymatch (eval cbv beta in T0) with | fun _ => _ -> _ => else_tac () | fun _ => ?T => reify_rec (ident.eagerly (@ident.Thunked.nat_rect) T (fun _ : Datatypes.unit => P0)) | T0 => else_tac () | ?T' => reify_rec (ident.eagerly (@Datatypes.nat_rect) T' P0) end | ident.eagerly (@Datatypes.nat_rect) ?T0 => lazymatch (eval cbv beta in T0) with | (fun _ => ?P -> ?Q) => let rP := base.reify P in let rQ := base.reify Q in then_tac (@ident.eager_nat_rect_arrow rP rQ) | T0 => else_tac () | ?T' => reify_rec (ident.eagerly (@Datatypes.nat_rect) T') end | ident.eagerly (@ident.Thunked.nat_rect) ?T => let rT := base.reify T in then_tac (@ident.eager_nat_rect rT) | @Datatypes.list_rect ?A ?T0 ?Pnil => lazymatch (eval cbv beta in T0) with | fun _ => _ -> _ => else_tac () | fun _ => ?T => reify_rec (@ident.Thunked.list_rect A T (fun _ : Datatypes.unit => Pnil)) | T0 => else_tac () | ?T' => reify_rec (@Datatypes.list_rect A T' Pnil) end | @Datatypes.list_rect ?A ?T0 => lazymatch (eval cbv beta in T0) with | (fun _ => ?P -> ?Q) => let rA := base.reify A in let rP := base.reify P in let rQ := base.reify Q in then_tac (@ident.list_rect_arrow rA rP rQ) | T0 => else_tac () | ?T' => reify_rec (@Datatypes.list_rect A T') end | @ident.Thunked.list_rect ?A ?T => let rA := base.reify A in let rT := base.reify T in then_tac (@ident.list_rect rA rT) | ident.eagerly (@Datatypes.list_rect) ?A ?T0 ?Pnil => lazymatch (eval cbv beta in T0) with | fun _ => _ -> _ => else_tac () | fun _ => ?T => reify_rec (ident.eagerly (@ident.Thunked.list_rect) A T (fun _ : Datatypes.unit => Pnil)) | T0 => else_tac () | ?T' => reify_rec (ident.eagerly (@Datatypes.list_rect) A T' Pnil) end | ident.eagerly (@Datatypes.list_rect) ?A ?T0 => lazymatch (eval cbv beta in T0) with | (fun _ => ?P -> ?Q) => let rA := base.reify A in let rP := base.reify P in let rQ := base.reify Q in then_tac (@ident.eager_list_rect_arrow rA rP rQ) | T0 => else_tac () | ?T' => reify_rec (ident.eagerly (@Datatypes.list_rect) A T') end | ident.eagerly (@ident.Thunked.list_rect) ?A ?T => let rA := base.reify A in let rT := base.reify T in then_tac (@ident.eager_list_rect rA rT) | @ListUtil.list_case ?A ?T0 ?Pnil => lazymatch (eval cbv beta in T0) with | fun _ => ?T => reify_rec (@ident.Thunked.list_case A T (fun _ : Datatypes.unit => Pnil)) | T0 => else_tac () | ?T' => reify_rec (@ListUtil.list_case A T' Pnil) end | @ident.Thunked.list_case ?A ?T => let rA := base.reify A in let rT := base.reify T in then_tac (@ident.list_case rA rT) | @List.length ?A => let rA := base.reify A in then_tac (@ident.List_length rA) | List.seq => then_tac ident.List_seq | @List.firstn ?A => let rA := base.reify A in then_tac (@ident.List_firstn rA) | @List.skipn ?A => let rA := base.reify A in then_tac (@ident.List_skipn rA) | @repeat ?A => let rA := base.reify A in then_tac (@ident.List_repeat rA) | @List.combine ?A ?B => let rA := base.reify A in let rB := base.reify B in then_tac (@ident.List_combine rA rB) | @List.map ?A ?B => let rA := base.reify A in let rB := base.reify B in then_tac (@ident.List_map rA rB) | @List.flat_map ?A ?B => let rA := base.reify A in let rB := base.reify B in then_tac (@ident.List_flat_map rA rB) | @List.partition ?A => let rA := base.reify A in then_tac (@ident.List_partition rA) | @List.app ?A => let rA := base.reify A in then_tac (@ident.List_app rA) | @List.map ?A ?B => let rA := base.reify A in let rB := base.reify B in then_tac (@ident.List_map rA rB) | @List.rev ?A => let rA := base.reify A in then_tac (@ident.List_rev rA) | @List.fold_right ?A ?B => let rA := base.reify A in let rB := base.reify B in then_tac (@ident.List_fold_right rA rB) | @update_nth ?T => let rT := base.reify T in then_tac (@ident.List_update_nth rT) | @List.nth_default ?T => let rT := base.reify T in then_tac (@ident.List_nth_default rT) | ident.eagerly (@List.nth_default) ?T => let rT := base.reify T in then_tac (@ident.eager_List_nth_default rT) | Z.add => then_tac ident.Z_add | Z.mul => then_tac ident.Z_mul | Z.pow => then_tac ident.Z_pow | Z.sub => then_tac ident.Z_sub | Z.opp => then_tac ident.Z_opp | Z.div => then_tac ident.Z_div | Z.modulo => then_tac ident.Z_modulo | Z.eqb => then_tac ident.Z_eqb | Z.leb => then_tac ident.Z_leb | Z.ltb => then_tac ident.Z_ltb | Z.geb => then_tac ident.Z_geb | Z.gtb => then_tac ident.Z_gtb | Z.log2 => then_tac ident.Z_log2 | Z.log2_up => then_tac ident.Z_log2_up | Z.shiftl => then_tac ident.Z_shiftl | Z.shiftr => then_tac ident.Z_shiftr | Z.land => then_tac ident.Z_land | Z.lor => then_tac ident.Z_lor | Z.min => then_tac ident.Z_min | Z.max => then_tac ident.Z_max | Z.bneg => then_tac ident.Z_bneg | Z.lnot_modulo => then_tac ident.Z_lnot_modulo | Z.of_nat => then_tac ident.Z_of_nat | Z.to_nat => then_tac ident.Z_to_nat | Z.mul_split => then_tac ident.Z_mul_split | Z.add_get_carry_full => then_tac ident.Z_add_get_carry | Z.add_with_carry => then_tac ident.Z_add_with_carry | Z.add_with_get_carry_full => then_tac ident.Z_add_with_get_carry | Z.sub_get_borrow_full => then_tac ident.Z_sub_get_borrow | Z.sub_with_get_borrow_full => then_tac ident.Z_sub_with_get_borrow | Z.zselect => then_tac ident.Z_zselect | Z.add_modulo => then_tac ident.Z_add_modulo | Z.rshi => then_tac ident.Z_rshi | Z.cc_m => then_tac ident.Z_cc_m | Z.combine_at_bitwidth => then_tac ident.Z_combine_at_bitwidth | ident.cast _ ?r => then_tac (ident.Z_cast r) | ident.cast2 _ ?r => then_tac (ident.Z_cast2 r) | @Some ?A => let rA := base.reify A in then_tac (@ident.Some rA) | @None ?A => let rA := base.reify A in then_tac (@ident.None rA) | ZRange.Build_zrange => then_tac ident.Build_zrange | ident.eagerly (?f ?x) => reify_rec (ident.eagerly f x) | fancy.interp ?idc => let ridc := (eval cbv [of_fancy] in (of_fancy idc)) in then_tac ridc | @gen_interp _ _ ?idc => then_tac idc | _ => else_tac () end end. Definition reify_list {var} {t} (ls : list (@expr.expr base.type ident var (type.base t))) : @expr.expr base.type ident var (type.base (base.type.list t)) := Datatypes.list_rect (fun _ => _) (expr.Ident ident.nil) (fun x _ xs => expr.Ident ident.cons @ x @ xs)%expr ls. Definition reify_option {var} {t} (v : option (@expr.expr base.type ident var (type.base t))) : @expr.expr base.type ident var (type.base (base.type.option t)) := Datatypes.option_rect (fun _ => _) (fun x => expr.Ident ident.Some @ x)%expr (expr.Ident ident.None) v. Fixpoint smart_Literal {var} {t:base.type} : base.interp t -> @expr.expr base.type ident var (type.base t) := match t with | base.type.type_base t => fun v => expr.Ident (ident.Literal v) | base.type.prod A B => fun '((a, b) : base.interp A * base.interp B) => expr.Ident ident.pair @ (@smart_Literal var A a) @ (@smart_Literal var B b) | base.type.list A => fun v : list (base.interp A) => reify_list (List.map (@smart_Literal var A) v) | base.type.option A => fun v : option (base.interp A) => reify_option (option_map (@smart_Literal var A) v) end%expr. Module Export Notations. Delimit Scope ident_scope with ident. Bind Scope ident_scope with ident. Global Arguments expr.Ident {base_type%type ident%function var%function t%etype} idc%ident. Notation "## x" := (Literal x) (only printing) : ident_scope. Notation "## x" := (Literal (t:=base.reify_base_type_of x) x) (only parsing) : ident_scope. Notation "## x" := (expr.Ident (Literal x)) (only printing) : expr_scope. Notation "## x" := (smart_Literal (t:=base.reify_type_of x) x) (only parsing) : expr_scope. Notation "# x" := (expr.Ident x) : expr_pat_scope. Notation "# x" := (@expr.Ident base.type _ _ _ x) : expr_scope. Notation "x @ y" := (expr.App x%expr_pat y%expr_pat) : expr_pat_scope. Notation "( x , y , .. , z )" := (expr.App (expr.App (#pair) .. (expr.App (expr.App (#pair) x%expr) y%expr) .. ) z%expr) : expr_scope. Notation "( x , y , .. , z )" := (expr.App (expr.App (#pair)%expr_pat .. (expr.App (expr.App (#pair)%expr_pat x%expr_pat) y%expr_pat) .. ) z%expr_pat) : expr_pat_scope. Notation "x :: y" := (#cons @ x @ y)%expr : expr_scope. Notation "[ ]" := (#nil)%expr : expr_scope. Notation "x :: y" := (#cons @ x @ y)%expr_pat : expr_pat_scope. Notation "[ ]" := (#nil)%expr_pat : expr_pat_scope. Notation "[ x ]" := (x :: [])%expr : expr_scope. Notation "[ x ; y ; .. ; z ]" := (#cons @ x @ (#cons @ y @ .. (#cons @ z @ #nil) ..))%expr : expr_scope. Notation "ls [[ n ]]" := ((#(List_nth_default) @ _ @ ls @ #(Literal n%nat))%expr) : expr_scope. Notation "xs ++ ys" := (#List_app @ xs @ ys)%expr : expr_scope. Notation "x - y" := (#Z_sub @ x @ y)%expr : expr_scope. Notation "x + y" := (#Z_add @ x @ y)%expr : expr_scope. Notation "x / y" := (#Z_div @ x @ y)%expr : expr_scope. Notation "x * y" := (#Z_mul @ x @ y)%expr : expr_scope. Notation "x >> y" := (#Z_shiftr @ x @ y)%expr : expr_scope. Notation "x << y" := (#Z_shiftl @ x @ y)%expr : expr_scope. Notation "x &' y" := (#Z_land @ x @ y)%expr : expr_scope. Notation "x || y" := (#Z_lor @ x @ y)%expr : expr_scope. Notation "x 'mod' y" := (#Z_modulo @ x @ y)%expr : expr_scope. Notation "- x" := (#Z_opp @ x)%expr : expr_scope. Global Arguments gen_interp _ _ !_. Global Arguments ident.Z_cast _%zrange_scope. Global Arguments ident.Z_cast2 _%zrange_scope. End Notations. End ident. Export ident.Notations. Notation ident := ident.ident. Global Strategy -1000 [expr.Interp expr.interp type.interp base.interp base.base_interp ident.gen_interp]. Ltac reify var term := expr.reify base.type ident ltac:(base.reify) ident.reify var term. Ltac Reify term := expr.Reify base.type ident ltac:(base.reify) ident.reify term. Ltac Reify_rhs _ := expr.Reify_rhs base.type ident ltac:(base.reify) ident.reify (@base.interp) (@ident.interp) (). Module Import invert_expr. Module ident. Definition invert_Literal_cps {t} (idc : ident t) : ~> option (type.interp base.interp t) := fun T => match idc with | ident.Literal _ n => fun k => k (Some n) | _ => fun k => k None end. Definition invert_Literal {t} (idc : ident t) : option (type.interp base.interp t) := match idc with | ident.Literal _ n => Some n | _ => None end. End ident. Section with_var_gen. Context {base_type} {ident var : type base_type -> Type}. Local Notation expr := (@expr base_type ident var). Local Notation if_arrow f t := (match t return Type with | type.arrow s d => f s d | type.base _ => unit end) (only parsing). Definition invert_Ident {t} (e : expr t) : option (ident t) := match e with | expr.Ident t idc => Some idc | _ => None end. Definition invert_App {t} (e : expr t) : option { s : _ & expr (s -> t) * expr s }%type := match e with | expr.App A B f x => Some (existT _ A (f, x)) | _ => None end. Definition invert_Abs {s d} (e : expr (s -> d)) : option (var s -> expr d)%type := match e in expr.expr t return option (if_arrow (fun s d => var s -> expr d) t) with | expr.Abs s d f => Some f | _ => None end. Definition invert_LetIn {t} (e : expr t) : option { s : _ & expr s * (var s -> expr t) }%type := match e with | expr.LetIn A B x f => Some (existT _ A (x, f)) | _ => None end. Definition invert_App2 {t} (e : expr t) : option { ss' : _ & expr (fst ss' -> snd ss' -> t) * expr (fst ss') * expr (snd ss') }%type := (e <- invert_App e; let '(existT s' (f', x')) := e in f' <- invert_App f'; let '(existT s (f, x)) := f' in Some (existT _ (s, s') (f, x, x')))%option. Definition invert_AppIdent {t} (e : expr t) : option { s : _ & ident (s -> t) * expr s }%type := (e <- invert_App e; let '(existT s (f, x)) := e in f' <- invert_Ident f; Some (existT _ s (f', x)))%option. Definition invert_AppIdent2 {t} (e : expr t) : option { ss' : _ & ident (fst ss' -> snd ss' -> t) * expr (fst ss') * expr (snd ss') }%type := (e <- invert_App2 e; let '(existT ss' (f, x, x')) := e in f' <- invert_Ident f; Some (existT _ ss' (f', x, x')))%option. Definition invert_Var {t} (e : expr t) : option (var t) := match e with | expr.Var t v => Some v | _ => None end. Fixpoint App_curried {t} : expr t -> type.for_each_lhs_of_arrow expr t -> expr (type.base (type.final_codomain t)) := match t with | type.base t => fun e _ => e | type.arrow s d => fun e x => @App_curried d (e @ (fst x)) (snd x) end. Fixpoint smart_App_curried {t} (e : expr t) : type.for_each_lhs_of_arrow var t -> expr (type.base (type.final_codomain t)) := match e in expr.expr t return type.for_each_lhs_of_arrow var t -> expr (type.base (type.final_codomain t)) with | expr.Abs s d f => fun v => @smart_App_curried d (f (fst v)) (snd v) | e => fun v => @App_curried _ e (type.map_for_each_lhs_of_arrow (fun _ v => expr.Var v) v) end. Fixpoint invert_App_curried {t} (e : expr t) : type.for_each_lhs_of_arrow expr t -> { t' : _ & expr t' * type.for_each_lhs_of_arrow expr t' }%type := match e in expr.expr t return type.for_each_lhs_of_arrow expr t -> { t' : _ & expr t' * type.for_each_lhs_of_arrow expr t' }%type with | expr.App s d f x => fun args => @invert_App_curried _ f (x, args) | e => fun args => existT _ _ (e, args) end. Definition invert_AppIdent_curried {t} (e : expr t) : option { t' : _ & ident t' * type.for_each_lhs_of_arrow expr t' }%type := match t return expr t -> _ with | type.base _ => fun e => let 'existT t (f, args) := invert_App_curried e tt in (idc <- invert_Ident f; Some (existT _ t (idc, args)))%option | _ => fun _ => None end e. End with_var_gen. Section with_var. Context {var : type base.type -> Type}. Local Notation expr := (@expr base.type ident var). Local Notation try_transportP P := (@type.try_transport base.type (@base.try_make_transport_cps) P _ _). Local Notation try_transport := (try_transportP _). Let type_base (v : base.type) : type.type base.type := type.base v. Coercion type_base : base.type >-> type.type. Definition invert_Z_opp {t} (e : expr t) : option (expr t) := match e in expr.expr t return option (expr t) with | expr.App (type.base base.type.Z) (type.base base.type.Z) (#ident.Z_opp) v => Some v | _ => None end%expr_pat%expr. Definition invert_Z_cast (e : expr base.type.Z) : option (zrange * expr base.type.Z) := match e with | expr.App (type.base base.type.Z) _ (#(ident.Z_cast r)) v => Some (r, v) | _ => None end%core%expr_pat%expr. Definition invert_Z_cast2 (e : expr (base.type.Z * base.type.Z)) : option ((zrange * zrange) * expr (base.type.Z * base.type.Z)) := match e with | expr.App (type.base (base.type.Z * base.type.Z)) _ (#(ident.Z_cast2 r)) v => Some (r, v) | _ => None end%etype%core%expr_pat%expr. Definition invert_pair {A B} (e : expr (A * B)) : option (expr A * expr B) := match e with | (a, b) => a <- try_transport a; b <- try_transport b; Some (a, b)%core | _ => None end%expr_pat%expr%option. Definition invert_Literal {t} (e : expr t) : option (type.interp base.interp t) := match e with | expr.Ident _ idc => ident.invert_Literal idc | _ => None end%expr_pat%expr. Definition invert_nil {t} (e : expr (base.type.list t)) : bool := match invert_Ident e with | Some (ident.nil _) => true | _ => false end. Definition invert_None {t} (e : expr (base.type.option t)) : bool := match invert_Ident e with | Some (ident.None _) => true | _ => false end. Local Notation if_arrow f t := (match t return Type with | (a -> b)%etype => f a b | _ => unit end) (only parsing). Definition invert_Some {t} (e : expr (base.type.option t)) : option (expr t) := match invert_AppIdent e with | Some (existT s (idc, e)) => match idc in ident.ident t return if_arrow (fun a b => expr a) t -> option match t return Type with | (a -> type.base (base.type.option t)) => expr t | _ => unit end%etype with | ident.Some _ => fun x => Some x | _ => fun _ => None end e | None => None end. Definition reflect_option {t} (e : expr (base.type.option t)) : option (option (expr t)) := match invert_None e, invert_Some e with | true, _ => Some None | _, Some x => Some (Some x) | false, None => None end. Local Notation if_arrow2 f t := (match t return Type with | (a -> b -> c)%etype => f a b c | _ => unit end) (only parsing). Definition invert_cons {t} (e : expr (base.type.list t)) : option (expr t * expr (base.type.list t)) := match invert_AppIdent2 e with | Some (existT _ (idc, x, y)) => match idc in ident.ident t return if_arrow2 (fun a b c => expr a) t -> if_arrow2 (fun a b c => expr b) t -> option match t return Type with | (a -> b -> type.base (base.type.list t)) => (expr t * expr (base.type.list t))%type | _ => unit end%etype with | ident.cons t => fun x xs => Some (x, xs) | _ => fun _ _ => None end x y | _ => None end. End with_var. Fixpoint reflect_list_cps' {var t} (e : @expr.expr base.type ident var t) {struct e} : ~> option (list (@expr.expr base.type ident var (type.base match t return base.type with | type.base (base.type.list t) => t | _ => base.type.unit end))) := match e in expr.expr t return ~> option (list (@expr.expr base.type ident var (type.base match t return base.type with | type.base (base.type.list t) => t | _ => base.type.unit end))) with | [] => (return (Some nil)) | x :: xs => (x' <-- type.try_transport_cps base.try_make_transport_cps (@expr.expr base.type ident var) _ _ x; xs' <-- @reflect_list_cps' var _ xs; xs' <-- type.try_transport_cps base.try_make_transport_cps (fun t => list (@expr.expr _ _ _ (type.base match t return base.type with | type.base (base.type.list t) => t | _ => base.type.unit end))) _ _ xs'; return (Some (x' :: xs')%list)) | _ => (return None) end%expr_pat%expr%cps. Definition reflect_list_cps {var t} (e : @expr.expr base.type ident var (type.base (base.type.list t))) : ~> option (list (@expr.expr base.type ident var (type.base t))) := reflect_list_cps' e. Global Arguments reflect_list_cps {var t} e [T] k. Definition reflect_list {var t} (e : @expr.expr base.type ident var (type.base (base.type.list t))) : option (list (@expr.expr base.type ident var (type.base t))) := reflect_list_cps e id. End invert_expr. Module DefaultValue. (** This module provides "default" inhabitants for the interpretation of PHOAS types and for the PHOAS [expr] type. These values are used for things like [nth_default] and in other places where we need to provide a dummy value in cases that will never actually be reached in correctly used code. *) Module type. Module base. Fixpoint default {t : base.type} : base.interp t := match t with | base.type.unit => tt | base.type.Z => (-1)%Z | base.type.nat => 0%nat | base.type.bool => true | base.type.zrange => r[0~>0]%zrange | base.type.list _ => nil | base.type.prod A B => (@default A, @default B) | base.type.option A => None end. End base. Fixpoint default {t} : type.interp base.interp t := match t with | type.base x => @base.default x | type.arrow s d => fun _ => @default d end. End type. Module expr. Module base. Section with_var. Context {var : type.type base.type -> Type}. Fixpoint default {t : base.type} : @expr base.type ident var (type.base t) := match t with | base.type.prod A B => (@default A, @default B) | base.type.list A => #ident.nil | base.type.option A => #ident.None | base.type.unit as t | base.type.Z as t | base.type.nat as t | base.type.bool as t | base.type.zrange as t => ##(@type.base.default t) end%expr. End with_var. Definition Default {t : base.type} : expr.Expr (type.base t) := fun _ => default. End base. Section with_var. Context {var : type base.type -> Type}. Fixpoint default {t : type base.type} : @expr base.type ident var t := match t with | type.base x => base.default | type.arrow s d => λ _, @default d end%expr. End with_var. Definition Default {t} : expr.Expr t := fun _ => default. End expr. End DefaultValue. Module Import defaults. Notation expr := (@expr base.type ident). Notation Expr := (@expr.Expr base.type ident). Notation type := (type base.type). Global Coercion type_base (t : base.type) : type := type.base t. Global Arguments type_base _ / . Notation interp := (@expr.interp base.type ident base.interp (@ident.interp)). Notation Interp := (@expr.Interp base.type ident base.interp (@ident.interp)). Ltac reify_type ty := type.reify ltac:(base.reify) base.type ty. Notation reify_type t := (ltac:(let rt := reify_type t in exact rt)) (only parsing). Notation reify_type_of e := (reify_type ((fun t (_ : t) => t) _ e)) (only parsing). End defaults. Notation reify_list := ident.reify_list. Notation reify_option := ident.reify_option. Module GallinaReify. Module base. Section reify. Context {var : type -> Type}. Fixpoint reify {t : base.type} {struct t} : base.interp t -> @expr var t := match t return base.interp t -> expr t with | base.type.prod A B as t => fun '((a, b) : base.interp A * base.interp B) => (@reify A a, @reify B b)%expr | base.type.list A as t => fun x : list (base.interp A) => reify_list (List.map (@reify A) x) | base.type.option A as t => fun x : option (base.interp A) => reify_option (option_map (@reify A) x) | base.type.unit as t | base.type.Z as t | base.type.bool as t | base.type.nat as t | base.type.zrange as t => fun x : base.interp t => (##x)%expr end. End reify. Definition Reify_as (t : base.type) (v : base.interp t) : Expr t := fun var => reify v. (** [Reify] does Ltac type inference to get the type *) Notation Reify v := (Reify_as (base.reify_type_of v) (fun _ => v)) (only parsing). End base. Section value. Context (var : type -> Type). Fixpoint value (t : type) := match t return Type with | type.arrow s d => var s -> value d | type.base t => base.interp t end%type. End value. Section reify. Context {var : type -> Type}. Fixpoint reify {t : type} {struct t} : value var t -> @expr var t := match t return value var t -> expr t with | type.arrow s d => fun (f : var s -> value var d) => (λ x , @reify d (f x))%expr | type.base t => @base.reify var t end. End reify. Fixpoint reify_as_interp {t : type} {struct t} : type.interp base.interp t -> @expr (type.interp base.interp) t := match t return type.interp base.interp t -> expr t with | type.arrow s d => fun (f : type.interp base.interp s -> type.interp base.interp d) => (λ x , @reify_as_interp d (f x))%expr | type.base t => @base.reify _ t end. Definition Reify_as (t : type) (v : forall var, value var t) : Expr t := fun var => reify (v _). (** [Reify] does Ltac type inference to get the type *) Notation Reify v := (Reify_as (reify_type_of v) (fun _ => v)) (only parsing). End GallinaReify. Module GeneralizeVar. (** In both lazy and cbv evaluation strategies, reduction under lambdas is only done at the very end. This means that if we have a computation which returns a PHOAS syntax tree, and we plug in two different values for [var], the computation is run twice. This module provides a way of computing a representation of terms which does not suffer from this issue. By computing a flat representation, and then going back to PHOAS, the cbv strategy will fully compute the preceeding PHOAS passes only once, and the lazy strategy will share computation among the various uses of [var] (because there are no lambdas to get blocked on) and thus will also compute the preceeding PHOAS passes only once. *) Module Flat. Inductive expr : type -> Set := | Ident {t} (idc : ident t) : expr t | Var (t : type) (n : positive) : expr t | Abs (s : type) (n : positive) {d} (f : expr d) : expr (s -> d) | App {s d} (f : expr (s -> d)) (x : expr s) : expr d | LetIn {A B} (n : positive) (ex : expr A) (eC : expr B) : expr B. End Flat. Definition ERROR {T} (v : T) : T. exact v. Qed. Fixpoint to_flat' {t} (e : @expr (fun _ => PositiveMap.key) t) (cur_idx : PositiveMap.key) : Flat.expr t := match e in expr.expr t return Flat.expr t with | expr.Var t v => Flat.Var t v | expr.App s d f x => Flat.App (@to_flat' _ f cur_idx) (@to_flat' _ x cur_idx) | expr.Ident t idc => Flat.Ident idc | expr.Abs s d f => Flat.Abs s cur_idx (@to_flat' d (f cur_idx) (Pos.succ cur_idx)) | expr.LetIn A B ex eC => Flat.LetIn cur_idx (@to_flat' A ex cur_idx) (@to_flat' B (eC cur_idx) (Pos.succ cur_idx)) end. Fixpoint from_flat {t} (e : Flat.expr t) : forall var, PositiveMap.t { t : type & var t } -> @expr var t := match e in Flat.expr t return forall var, _ -> expr t with | Flat.Var t v => fun var ctx => match (tv <- PositiveMap.find v ctx; type.try_transport base.try_make_transport_cps var _ _ (projT2 tv))%option with | Some v => expr.Var v | None => ERROR DefaultValue.expr.default end | Flat.Ident t idc => fun var ctx => expr.Ident idc | Flat.App s d f x => let f' := @from_flat _ f in let x' := @from_flat _ x in fun var ctx => expr.App (f' var ctx) (x' var ctx) | Flat.Abs s cur_idx d f => let f' := @from_flat d f in fun var ctx => expr.Abs (fun v => f' var (PositiveMap.add cur_idx (existT _ s v) ctx)) | Flat.LetIn A B cur_idx ex eC => let ex' := @from_flat A ex in let eC' := @from_flat B eC in fun var ctx => expr.LetIn (ex' var ctx) (fun v => eC' var (PositiveMap.add cur_idx (existT _ A v) ctx)) end. Definition to_flat {t} (e : expr t) : Flat.expr t := to_flat' e 1%positive. Definition ToFlat {t} (E : Expr t) : Flat.expr t := to_flat (E _). Definition FromFlat {t} (e : Flat.expr t) : Expr t := let e' := @from_flat t e in fun var => e' var (PositiveMap.empty _). Definition GeneralizeVar {t} (e : @expr (fun _ => PositiveMap.key) t) : Expr t := FromFlat (to_flat e). End GeneralizeVar. End Compilers. Global Opaque ident.cast. (* This should never be unfolded except in [LanguageWf] *)