(* Following http://adam.chlipala.net/theses/andreser.pdf chapter 3 *) Require Import Coq.ZArith.ZArith Coq.micromega.Lia Crypto.Algebra.Nsatz. Require Import Crypto.Util.Tactics.UniquePose Crypto.Util.Decidable. Require Import Crypto.Util.Tuple Crypto.Util.Prod Crypto.Util.LetIn. Require Import Crypto.Util.ListUtil Coq.Lists.List Crypto.Util.NatUtil. Require Import QArith.QArith_base QArith.Qround Crypto.Util.QUtil. Require Import Crypto.Algebra.Ring Crypto.Util.Decidable.Bool2Prop. Require Import Crypto.Util.Tactics.RunTacticAsConstr. Require Import Crypto.Util.Notations. Import ListNotations. Local Open Scope Z_scope. Definition runtime_mul := Z.mul. Definition runtime_add := Z.add. Delimit Scope runtime_scope with RT. Infix "*" := runtime_mul : runtime_scope. Infix "+" := runtime_add : runtime_scope. Module Associational. Definition eval (p:list (Z*Z)) : Z := fold_right Z.add 0%Z (map (fun t => fst t * snd t) p). Lemma eval_nil : eval nil = 0. Proof. trivial. Qed. Lemma eval_cons p q : eval (p::q) = fst p * snd p + eval q. Proof. trivial. Qed. Lemma eval_app p q: eval (p++q) = eval p + eval q. Proof. induction p; rewrite <-?List.app_comm_cons; rewrite ?eval_nil, ?eval_cons; nsatz. Qed. Hint Rewrite eval_nil eval_cons eval_app : push_eval. Local Ltac push := autorewrite with push_eval push_map push_partition push_flat_map push_fold_right push_nth_default cancel_pair. Lemma eval_map_mul (a x:Z) (p:list (Z*Z)) : eval (List.map (fun t => (a*fst t, x*snd t)) p) = a*x*eval p. Proof. induction p; push; nsatz. Qed. Hint Rewrite eval_map_mul : push_eval. Definition mul (p q:list (Z*Z)) : list (Z*Z) := flat_map (fun t => map (fun t' => (fst t * fst t', (snd t * snd t')%RT)) q) p. Lemma eval_mul p q : eval (mul p q) = eval p * eval q. Proof. induction p; cbv [mul]; push; nsatz. Qed. Hint Rewrite eval_mul : push_eval. Example base10_2digit_mul (a0:Z) (a1:Z) (b0:Z) (b1:Z) : {ab| eval ab = eval [(10,a1);(1,a0)] * eval [(10,b1);(1,b0)]}. eexists ?[ab]. (* Goal: eval ?ab = eval [(10,a1);(1,a0)] * eval [(10,b1);(1,b0)] *) rewrite <-eval_mul. (* Goal: eval ?ab = eval (mul [(10,a1);(1,a0)] [(10,b1);(1,b0)]) *) cbv -[runtime_mul eval]. (* Goal: eval ?ab = eval [(100,(a1*b1));(10,a1*b0);(10,a0*b1);(1,a0*b0)]%RT *) trivial. Defined. Definition split (s:Z) (p:list (Z*Z)) : list (Z*Z) * list (Z*Z) := let hi_lo := partition (fun t => fst t mod s =? 0) p in (snd hi_lo, map (fun t => (fst t / s, snd t)) (fst hi_lo)). Lemma eval_split s p (s_nz:s<>0) : eval (fst (split s p)) + s * eval (snd (split s p)) = eval p. Proof. cbv [split]; induction p; repeat match goal with | |- context[?a/?b] => unique pose proof (Z_div_exact_full_2 a b ltac:(trivial) ltac:(trivial)) | _ => progress push | _ => progress break_match | _ => progress nsatz end. Qed. Lemma reduction_rule a b s c (modulus_nz:s-c<>0) : (a + s * b) mod (s - c) = (a + c * b) mod (s - c). Proof. replace (a + s * b) with ((a + c*b) + b*(s-c)) by nsatz. rewrite Z.add_mod,Z_mod_mult,Z.add_0_r,Z.mod_mod;trivial. Qed. Definition reduce (s:Z) (c:list _) (p:list _) : list (Z*Z) := let lo_hi := split s p in fst lo_hi ++ mul c (snd lo_hi). Lemma eval_reduce s c p (s_nz:s<>0) (modulus_nz:s-eval c<>0) : eval (reduce s c p) mod (s - eval c) = eval p mod (s - eval c). Proof. cbv [reduce]; push. rewrite <-reduction_rule, eval_split; trivial. Qed. Hint Rewrite eval_reduce : push_eval. Section Carries. Context {modulo div : Z -> Z -> Z}. Context {div_mod : forall a b:Z, b <> 0 -> a = b * (div a b) + modulo a b}. Definition carryterm (w fw:Z) (t:Z * Z) := if (Z.eqb (fst t) w) then dlet t2 := snd t in dlet d2 := div t2 fw in dlet m2 := modulo t2 fw in [(w * fw, d2);(w,m2)] else [t]. Lemma eval_carryterm w fw (t:Z * Z) (fw_nonzero:fw<>0): eval (carryterm w fw t) = eval [t]. Proof using Type*. cbv [carryterm Let_In]; break_match; push; [|trivial]. specialize (div_mod (snd t) fw fw_nonzero). rewrite Z.eqb_eq in *. nsatz. Qed. Hint Rewrite eval_carryterm using auto : push_eval. Definition carry (w fw:Z) (p:list (Z * Z)):= flat_map (carryterm w fw) p. Lemma eval_carry w fw p (fw_nonzero:fw<>0): eval (carry w fw p) = eval p. Proof using Type*. cbv [carry]; induction p; push; nsatz. Qed. Hint Rewrite eval_carry using auto : push_eval. End Carries. End Associational. Module Positional. Section Positional. Context (weight : nat -> Z) (weight_0 : weight 0%nat = 1) (weight_nz : forall i, weight i <> 0). Definition to_associational (n:nat) (xs:list Z) : list (Z*Z) := combine (map weight (List.seq 0 n)) xs. Definition eval n x := Associational.eval (@to_associational n x). Lemma eval_to_associational n x : Associational.eval (@to_associational n x) = eval n x. Proof. trivial. Qed. (* SKIP over this: zeros, add_to_nth *) Local Ltac push := autorewrite with push_eval push_map distr_length push_flat_map push_fold_right push_nth_default cancel_pair natsimplify. Definition zeros n : list Z := List.repeat 0 n. Lemma eval_zeros n : eval n (zeros n) = 0. Proof. cbv [eval Associational.eval to_associational zeros]. rewrite <- (seq_length n 0) at 2. generalize dependent (List.seq 0 n); intro xs. induction xs; simpl; nsatz. Qed. Definition add_to_nth i x : list Z -> list Z := ListUtil.update_nth i (runtime_add x). Lemma eval_add_to_nth (n:nat) (i:nat) (x:Z) (xs:list Z) (H:(i progress push | _ => progress break_match | _ => progress (apply Zminus_eq; ring_simplify) | _ => rewrite <-ListUtil.map_nth_default_always end; lia. Qed. Hint Rewrite @eval_add_to_nth eval_zeros : push_eval. Definition place (t:Z*Z) (i:nat) : nat * Z := nat_rect (fun _ => (nat * Z)%type) ((O, fst t * snd t)%RT) (fun i' place_i' => let i := S i' in if (fst t mod weight i =? 0) then (i, let c := fst t / weight i in (c * snd t)%RT) else place_i') i. Lemma place_in_range (t:Z*Z) (n:nat) : (fst (place t n) < S n)%nat. Proof. induction n; cbv [place nat_rect] in *; break_match; autorewrite with cancel_pair; try omega. Qed. Lemma weight_place t i : weight (fst (place t i)) * snd (place t i) = fst t * snd t. Proof. induction i; cbv [place nat_rect] in *; break_match; push; repeat match goal with |- context[?a/?b] => unique pose proof (Z_div_exact_full_2 a b ltac:(auto) ltac:(auto)) end; nsatz. Qed. Hint Rewrite weight_place : push_eval. Definition from_associational n (p:list (Z*Z)) := List.fold_right (fun t => let p := place t (pred n) in add_to_nth (fst p) (snd p) ) (zeros n) p. Lemma eval_from_associational {n} p (n_nz:n<>O \/ p = nil) : eval n (from_associational n p) = Associational.eval p. Proof. destruct n_nz; [ induction p | subst p ]; cbv [from_associational] in *; push; try pose proof place_in_range a (pred n); try omega; try nsatz; apply fold_right_invariant; cbv [zeros add_to_nth]; intros; rewrite ?map_length, ?List.repeat_length, ?seq_length, ?length_update_nth; try omega. Qed. Hint Rewrite @eval_from_associational : push_eval. Section mulmod. Context (m:Z) (m_nz:m <> 0) (s:Z) (s_nz:s <> 0) (c:list (Z*Z)) (Hm:m = s - Associational.eval c). Definition mulmod (n:nat) (a b:list Z) : list Z := let a_a := to_associational n a in let b_a := to_associational n b in let ab_a := Associational.mul a_a b_a in let abm_a := Associational.reduce s c ab_a in from_associational n abm_a. Lemma eval_mulmod n (f g:list Z) (Hf : length f = n) (Hg : length g = n) : eval n (mulmod n f g) mod m = (eval n f * eval n g) mod m. Proof. cbv [mulmod]; rewrite Hm in *; push; trivial. destruct f, g; simpl in *; [ right; subst n | left; try omega.. ]. clear; cbv -[Associational.reduce]. induction c as [|?? IHc]; simpl; trivial. Qed. End mulmod. Section Carries. Context {modulo div: Z -> Z -> Z}. Context {div_mod : forall a b:Z, b <> 0 -> a = b * (div a b) + modulo a b}. Definition carry {n m} (index:nat) (p:list Z) : list Z := from_associational m (@Associational.carry modulo div (weight index) (weight (S index) / weight index) (to_associational n p)). Lemma eval_carry {n m} i p: (n <> 0%nat) -> (m <> 0%nat) -> weight (S i) / weight i <> 0 -> eval m (carry (n:=n) (m:=m) i p) = eval n p. Proof. cbv [carry]; intros; push; [|tauto]. rewrite @Associational.eval_carry by eauto. apply eval_to_associational. Qed. Hint Rewrite @eval_carry : push_eval. End Carries. End Positional. End Positional. Module Compilers. Module type. Inductive type := unit | prod (A B : type) | arrow (s d : type) | list (A : type) | nat | Z | bool. Fixpoint interp (t : type) := match t with | unit => Datatypes.unit | prod A B => interp A * interp B | arrow A B => interp A -> interp B | list A => Datatypes.list (interp A) | nat => Datatypes.nat | Z => BinInt.Z | bool => Datatypes.bool end%type. Ltac reify ty := lazymatch eval cbv beta in ty with | Datatypes.unit => unit | Datatypes.prod ?A ?B => let rA := reify A in let rB := reify B in constr:(prod rA rB) | ?A -> ?B => let rA := reify A in let rB := reify B in constr:(arrow rA rB) | Datatypes.list ?T => let rT := reify T in constr:(list rT) | Datatypes.nat => nat | Datatypes.bool => bool | BinInt.Z => Z end. Module Export Notations. Delimit Scope ctype_scope with ctype. Bind Scope ctype_scope with type. Notation "()" := unit : ctype_scope. Notation "A * B" := (prod A B) : ctype_scope. Notation "A -> B" := (arrow A B) : ctype_scope. Notation type := type. End Notations. End type. Export type.Notations. Module op. Import type. Inductive op : type -> type -> Set := | Const {t} (v : interp t) : op unit t | Let_In {tx tC} : op (tx * (tx -> tC)) tC | App {s d} : op ((s -> d) * s) d | S : op nat nat | nil {t} : op unit (list t) | cons {t} : op (t * list t) (list t) | fst {A B} : op (A * B) A | snd {A B} : op (A * B) B | bool_rect {T} : op (T * T * bool) T | nat_rect {P} : op (P * (nat -> P -> P) * nat) P | pred : op nat nat | List_seq : op (nat * nat) (list nat) | List_repeat {A} : op (A * nat) (list A) | List_combine {A B} : op (list A * list B) (list (A * B)) | List_map {A B} : op ((A -> B) * list A) (list B) | List_flat_map {A B} : op ((A -> list B) * list A) (list B) | List_partition {A} : op ((A -> bool) * list A) (list A * list A) | List_app {A} : op (list A * list A) (list A) | List_fold_right {A B} : op ((B -> A -> A) * A * list B) A | List_update_nth {T} : op (nat * (T -> T) * list T) (list T) | Z_runtime_mul : op (Z * Z) Z | Z_runtime_add : op (Z * Z) Z | Z_add : op (Z * Z) Z | Z_mul : op (Z * Z) Z | Z_pow : op (Z * Z) Z | Z_opp : op Z Z | Z_div : op (Z * Z) Z | Z_modulo : op (Z * Z) Z | Z_eqb : op (Z * Z) bool | Z_of_nat : op nat Z. Notation curry2 f := (fun '(a, b) => f a b). Notation curry3 f := (fun '(a, b, c) => f a b c). Definition interp {s d} (opc : op s d) : type.interp s -> type.interp d := match opc in op s d return type.interp s -> type.interp d with | Const t v => fun _ => v | Let_In tx tC => curry2 (@LetIn.Let_In (type.interp tx) (fun _ => type.interp tC)) | App s d => fun '((f, x) : (type.interp s -> type.interp d) * type.interp s) => f x | S => Datatypes.S | nil t => fun _ => @Datatypes.nil (type.interp t) | cons t => curry2 (@Datatypes.cons (type.interp t)) | fst A B => @Datatypes.fst (type.interp A) (type.interp B) | snd A B => @Datatypes.snd (type.interp A) (type.interp B) | bool_rect T => curry3 (@Datatypes.bool_rect (fun _ => type.interp T)) | nat_rect P => curry3 (@Datatypes.nat_rect (fun _ => type.interp P)) | pred => Nat.pred | List_seq => curry2 List.seq | List_combine A B => curry2 (@List.combine (type.interp A) (type.interp B)) | List_map A B => curry2 (@List.map (type.interp A) (type.interp B)) | List_repeat A => curry2 (@List.repeat (type.interp A)) | List_flat_map A B => curry2 (@List.flat_map (type.interp A) (type.interp B)) | List_partition A => curry2 (@List.partition (type.interp A)) | List_app A => curry2 (@List.app (type.interp A)) | List_fold_right A B => curry3 (@List.fold_right (type.interp A) (type.interp B)) | List_update_nth T => curry3 (@update_nth (type.interp T)) | Z_runtime_mul => curry2 runtime_mul | Z_runtime_add => curry2 runtime_add | Z_add => curry2 Z.add | Z_mul => curry2 Z.mul | Z_pow => curry2 Z.pow | Z_modulo => curry2 Z.modulo | Z_opp => Z.opp | Z_div => curry2 Z.div | Z_eqb => curry2 Z.eqb | Z_of_nat => Z.of_nat end. Module List. Notation seq := List_seq. Notation repeat := List_repeat. Notation combine := List_combine. Notation map := List_map. Notation flat_map := List_flat_map. Notation partition := List_partition. Notation app := List_app. Notation fold_right := List_fold_right. Notation update_nth := List_update_nth. End List. Module Z. Notation runtime_mul := Z_runtime_mul. Notation runtime_add := Z_runtime_add. Notation add := Z_add. Notation mul := Z_mul. Notation pow := Z_pow. Notation opp := Z_opp. Notation div := Z_div. Notation modulo := Z_modulo. Notation eqb := Z_eqb. Notation of_nat := Z_of_nat. End Z. Module Export Notations. Notation op := op. End Notations. End op. Export op.Notations. Inductive expr {var : type -> Type} : type -> Type := | TT : expr () | Pair {A B} (a : expr A) (b : expr B) : expr (A * B) | Var {t} (v : var t) : expr t | Op {s d} (opc : op s d) (args : expr s) : expr d | Abs {s d} (f : var s -> expr d) : expr (s -> d). Bind Scope expr_scope with expr. Delimit Scope expr_scope with expr. Notation "'λ' x .. y , t" := (Abs (fun x => .. (Abs (fun y => t%expr)) ..)) : expr_scope. Notation "( x , y , .. , z )" := (Pair .. (Pair x%expr y%expr) .. z%expr) : expr_scope. Notation "( )" := TT : expr_scope. Notation "()" := TT : expr_scope. Notation "'expr_let' x := A 'in' b" := (Op op.Let_In (Pair A%expr (Abs (fun x => b%expr)))) : expr_scope. Notation "f x" := (Op op.App (f, x)%expr) (only printing) : expr_scope. Definition Expr t := forall var, @expr var t. Fixpoint interp {t} (e : @expr type.interp t) : type.interp t := match e with | TT => tt | Pair A B a b => (interp a, interp b) | Var t v => v | Op s d opc args => op.interp opc (interp args) | Abs s d f => fun v => interp (f v) end. Definition Interp {t} (e : Expr t) := interp (e _). Ltac is_known_const_cps2 term on_success on_failure := let recurse term := is_known_const_cps2 term on_success on_failure in lazymatch term with | S ?term => recurse term | O => on_success () | Z0 => on_success () | Zpos ?p => recurse p | Zneg ?p => recurse p | xI ?p => recurse p | xO ?p => recurse p | xH => on_success () | ?term => on_failure term end. Ltac require_known_const term := is_known_const_cps2 term ltac:(fun _ => idtac) ltac:(fun term => fail 0 "Not a known const:" term). Ltac is_known_const term := is_known_const_cps2 term ltac:(fun _ => true) ltac:(fun _ => false). Definition Uncurry0 {A var} (opc : op type.unit A) : @expr var A := Op opc TT. Definition Uncurry1 {A B var} (opc : op A B) : @expr var (A -> B) := λ a, Op opc (Var a). Definition Uncurry2 {A B C var} (opc : op (A * B) C) : @expr var (A -> B -> C) := λ a b, Op opc (Var a, Var b). Definition Uncurry3 {A B C D var} (opc : op (A * B * C) D) : @expr var (A -> B -> C -> D) := λ a b c, Op opc (Var a, Var b, Var c). Ltac reify_op var term := (*let dummy := match goal with _ => idtac "attempting to reify_op" term end in*) let Uncurry0 x := constr:(Uncurry0 (var:=var) x) in let Uncurry1 x := constr:(Uncurry1 (var:=var) x) in let Uncurry2 x := constr:(Uncurry2 (var:=var) x) in let Uncurry3 x := constr:(Uncurry3 (var:=var) x) in lazymatch term with | S => Uncurry1 op.S | @nil ?T => let rT := type.reify T in Uncurry0 (@op.nil rT) | @cons ?T => let rT := type.reify T in Uncurry2 (@op.cons rT) | seq => Uncurry2 op.List.seq | @List.repeat ?A => let rA := type.reify A in Uncurry2 (@op.List.repeat rA) | @Let_In ?A (fun _ => ?B) => let rA := type.reify A in let rB := type.reify B in Uncurry2 (@op.Let_In rA rB) | @combine ?A ?B => let rA := type.reify A in let rB := type.reify B in Uncurry2 (@op.List.combine rA rB) | @List.map ?A ?B => let rA := type.reify A in let rB := type.reify B in Uncurry2 (@op.List.map rA rB) | @List.flat_map ?A ?B => let rA := type.reify A in let rB := type.reify B in Uncurry2 (@op.List.flat_map rA rB) | @fst ?A ?B => let rA := type.reify A in let rB := type.reify B in Uncurry1 (@op.fst rA rB) | @snd ?A ?B => let rA := type.reify A in let rB := type.reify B in Uncurry1 (@op.snd rA rB) | @List.partition ?A => let rA := type.reify A in Uncurry2 (@op.List.partition rA) | @List.app ?A => let rA := type.reify A in Uncurry2 (@op.List.app rA) | @List.fold_right ?A ?B => let rA := type.reify A in let rB := type.reify B in Uncurry3 (@op.List.fold_right rA rB) | pred => Uncurry1 op.pred | @update_nth ?T => let rT := type.reify T in Uncurry3 (@op.List.update_nth rT) | runtime_mul => Uncurry2 op.Z.runtime_mul | runtime_add => Uncurry2 op.Z.runtime_add | Z.add => Uncurry2 op.Z.add | Z.mul => Uncurry2 op.Z.mul | Z.pow => Uncurry2 op.Z.pow | Z.opp => Uncurry1 op.Z.opp | Z.div => Uncurry2 op.Z.div | Z.modulo => Uncurry2 op.Z.modulo | Z.eqb => Uncurry2 op.Z.eqb | Z.of_nat => Uncurry1 op.Z.of_nat | @nat_rect (fun _ => ?T) => let rT := type.reify T in Uncurry3 (@op.nat_rect rT) | @bool_rect (fun _ => ?T) => let rT := type.reify T in Uncurry3 (@op.bool_rect rT) | _ => let assert_const := match goal with | _ => require_known_const term end in let T := type of term in let rT := type.reify T in Uncurry0 (@op.Const rT term) end. Module var_context. Inductive list {var : type -> Type} := | nil | cons {t} (gallina_v : type.interp t) (v : var t) (ctx : list). End var_context. (* cf COQBUG(https://github.com/coq/coq/issues/5448) *) Ltac refresh n := let n' := fresh n in let n' := fresh n' in let n' := fresh n' in n'. Ltac type_of_first_argument_of f := let f_ty := type of f in lazymatch eval hnf in f_ty with | forall x : ?T, _ => T end. (** Forms of abstraction in Gallina that our reflective language cannot handle get handled by specializing the code "template" to each particular application of that abstraction. In particular, type arguments (nat, Z, (λ _, nat), etc) get substituted into lambdas and treated as a integral part of primitive operations (such as [@List.app T], [@list_rect (λ _, nat)]). During reification, we accumulate them in a right-associated tuple, using [tt] as the "nil" base case. When we hit a λ or an identifier, we plug in the template parameters as necessary. *) Ltac require_template_parameter parameter_type := first [ unify parameter_type Prop | unify parameter_type Set | unify parameter_type Type | lazymatch eval hnf in parameter_type with | forall x : ?T, @?P x => let check := constr:(fun x : T => ltac:(require_template_parameter (P x); exact I)) in idtac end ]. Ltac is_template_parameter parameter_type := is_success_run_tactic ltac:(fun _ => require_template_parameter parameter_type). Ltac plug_template_ctx f template_ctx := lazymatch template_ctx with | tt => f | (?arg, ?template_ctx') => let T := type_of_first_argument_of f in let x_is_template_parameter := is_template_parameter T in lazymatch x_is_template_parameter with | true => plug_template_ctx (f arg) template_ctx' | false => constr:(fun x : T => ltac:(let v := plug_template_ctx (f x) template_ctx in exact v)) end end. Ltac reify_helper var term value_ctx template_ctx := let reify_rec term := reify_helper var term value_ctx template_ctx in (*let dummy := match goal with _ => idtac "reify_helper: attempting to reify:" term end in*) lazymatch value_ctx with | context[@var_context.cons _ ?rT term ?v _] => constr:(@Var var rT v) | _ => let term_is_known_const := is_known_const term in lazymatch term_is_known_const with | true => reify_op var term | false => lazymatch term with | tt => TT | @pair ?A ?B ?a ?b => let ra := reify_rec a in let rb := reify_rec b in constr:(Pair (var:=var) ra rb) | match ?b with true => ?t | false => ?f end => let T := type of t in reify_rec (@bool_rect (fun _ => T) t f b) | let x := ?a in @?b x => let A := type of a in let B := lazymatch type of b with forall x, @?B x => B end in reify_rec (@Let_In A B a b) | ?f ?x => let ty := type_of_first_argument_of f in let x_is_template_parameter := is_template_parameter ty in lazymatch x_is_template_parameter with | true => (* we can't reify things of type [Type], so we save it for later to plug in *) reify_helper var f value_ctx (x, template_ctx) | false => let rx := reify_helper var x value_ctx tt in let rf := reify_helper var f value_ctx template_ctx in constr:(Op (var:=var) op.App (Pair (var:=var) rf rx)) end | (fun x : ?T => ?f) => let x_is_template_parameter := is_template_parameter T in lazymatch x_is_template_parameter with | true => lazymatch template_ctx with | (?arg, ?template_ctx) => (* we pull a trick with [match] to plug in [arg] without running cbv β *) reify_helper var (match arg with x => f end) value_ctx template_ctx end | false => let rT := type.reify T in let not_x := refresh x in let not_x2 := refresh not_x in let rf0 := constr:( fun (x : T) (not_x : var rT) => match f return _ with (* c.f. COQBUG(https://github.com/coq/coq/issues/6252#issuecomment-347041995) for [return _] *) | not_x2 => ltac:( let f := (eval cbv delta [not_x2] in not_x2) in (*idtac "rec call" f "was" term;*) let rf := reify_helper var f (@var_context.cons var rT x not_x value_ctx) template_ctx in exact rf) end) in lazymatch rf0 with | (fun _ => ?rf) => constr:(@Abs var rT _ rf) | _ => (* This will happen if the reified term still mentions the non-var variable. By chance, [cbv delta] strips type casts, which are only places that I can think of where such dependency might remain. However, if this does come up, having a distinctive error message is much more useful for debugging than the generic "no matching clause" *) let dummy := match goal with | _ => fail 1 "Failure to eliminate functional dependencies of" rf0 end in constr:(I : I) end end | _ => let term := plug_template_ctx term template_ctx in reify_op var term end end end. Ltac reify var term := reify_helper var term (@var_context.nil var) tt. Ltac Reify term := constr:(fun var : type -> Type => ltac:(let r := reify var term in exact r)). Ltac Reify_rhs _ := let RHS := lazymatch goal with |- _ = ?RHS => RHS end in let R := Reify RHS in transitivity (Interp R); [ | cbv beta iota delta [Interp interp op.interp Uncurry0 Uncurry1 Uncurry2 Uncurry3 Let_In type.interp bool_rect]; reflexivity ]. End Compilers. Import Associational Positional Compilers. Local Coercion Z.of_nat : nat >-> Z. Local Coercion QArith_base.inject_Z : Z >-> Q. Definition w (i:nat) : Z := 2^Qceiling((25+1/2)*i). Example base_25_5_mul (*(f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 g0 g1 g2 g3 g4 g5 g6 g7 g8 g9 : Z) (f:=(f0 :: f1 :: f2 :: f3 :: f4 :: f5 :: f6 :: f7 :: f8 :: f9 :: nil)%list) (g:=(f0 :: f1 :: f2 :: f3 :: f4 :: f5 :: f6 :: f7 :: f8 :: f9 :: nil)%list)*) (f g : list Z) (n:=10%nat) (Hf : length f = n) (Hg : length g = n) : { fg : list Z | (eval w n fg) mod (2^255-19) = (eval w n f * eval w n g) mod (2^255-19) }. (* manually assign names to limbs for pretty-printing *) eexists ?[fg]. erewrite <-eval_mulmod with (s:=2^255) (c:=[(1,19)]) by (try assumption; try eapply pow_ceil_mul_nat_nonzero; vm_decide). (* eval w ?fg mod (2 ^ 255 - 19) = *) (* eval w *) (* (mulmod w (2^255) [(1, 19)] (f9,f8,f7,f6,f5,f4,f3,f2,f1,f0) *) (* (g9,g8,g7,g6,g5,g4,g3,g2,g1,g0)) mod (2^255 - 19) *) eapply f_equal2; [|trivial]. eapply f_equal. (* ?fg = *) (* mulmod w (2 ^ 255) [(1, 19)] (f9, f8, f7, f6, f5, f4, f3, f2, f1, f0) *) (* (g9, g8, g7, g6, g5, g4, g3, g2, g1, g0) *) (*cbv [f g].*) cbv [w Qceiling Qfloor Qopp Qnum Qdiv Qplus inject_Z Qmult Qinv Qden Pos.mul]. apply (f_equal (fun F => F f g)). cbv [n]. cbv delta [mulmod w to_associational mul to_associational reduce from_associational add_to_nth zeros place split]. Reify_rhs (). (*cbv -[runtime_mul runtime_add]; cbv [runtime_mul runtime_add]. ring_simplify_subterms.*) (* ?fg = (f0*g9+ f1*g8+ f2*g7+ f3*g6+ f4*g5+ f5*g4+ f6*g3+ f7*g2+ f8*g1+ f9*g0, f0*g8+ 2*f1*g7+ f2*g6+ 2*f3*g5+ f4*g4+ 2*f5*g3+ f6*g2+ 2*f7*g1+ f8*g0+ 38*f9*g9, f0*g7+ f1*g6+ f2*g5+ f3*g4+ f4*g3+ f5*g2+ f6*g1+ f7*g0+ 19*f8*g9+ 19*f9*g8, f0*g6+ 2*f1*g5+ f2*g4+ 2*f3*g3+ f4*g2+ 2*f5*g1+ f6*g0+ 38*f7*g9+ 19*f8*g8+ 38*f9*g7, f0*g5+ f1*g4+ f2*g3+ f3*g2+ f4*g1+ f5*g0+ 19*f6*g9+ 19*f7*g8+ 19*f8*g7+ 19*f9*g6, f0*g4+ 2*f1*g3+ f2*g2+ 2*f3*g1+ f4*g0+ 38*f5*g9+ 19*f6*g8+ 38*f7*g7+ 19*f8*g6+ 38*f9*g5, f0*g3+ f1*g2+ f2*g1+ f3*g0+ 19*f4*g9+ 19*f5*g8+ 19*f6*g7+ 19*f7*g6+ 19*f8*g5+ 19*f9*g4, f0*g2+ 2*f1*g1+ f2*g0+ 38*f3*g9+ 19*f4*g8+ 38*f5*g7+ 19*f6*g6+ 38*f7*g5+ 19*f8*g4+ 38*f9*g3, f0*g1+ f1*g0+ 19*f2*g9+ 19*f3*g8+ 19*f4*g7+ 19*f5*g6+ 19*f6*g5+ 19*f7*g4+ 19*f8*g3+ 19*f9*g2, f0*g0+ 38*f1*g9+ 19*f2*g8+ 38*f3*g7+ 19*f4*g6+ 38*f5*g5+ 19*f6*g4+ 38*f7*g3+ 19*f8*g2+ 38*f9*g1) *) (*trivial. Defined.*) Abort. (* Eval cbv on this one would produce an ugly term due to the use of [destruct] *)