Require Import Coq.ZArith.ZArith. Require Import Coq.micromega.Lia. Require Import Coq.Lists.List. Require Import Coq.Classes.Morphisms. Require Import Coq.MSets.MSetPositive. Require Import Coq.FSets.FMapPositive. Require Import Crypto.Experiments.NewPipeline.Language. Require Import Crypto.Experiments.NewPipeline.LanguageInversion. Require Import Crypto.Experiments.NewPipeline.LanguageWf. Require Import Crypto.Experiments.NewPipeline.UnderLetsProofs. Require Import Crypto.Experiments.NewPipeline.GENERATEDIdentifiersWithoutTypesProofs. Require Import Crypto.Experiments.NewPipeline.Rewriter. Require Import Crypto.Util.Tactics.BreakMatch. Require Import Crypto.Util.Tactics.SplitInContext. Require Import Crypto.Util.Tactics.SpecializeAllWays. Require Import Crypto.Util.Tactics.SpecializeBy. Require Import Crypto.Util.Tactics.RewriteHyp. Require Import Crypto.Util.Tactics.Head. Require Import Crypto.Util.Prod. Require Import Crypto.Util.ListUtil. Require Import Crypto.Util.Option. Require Import Crypto.Util.CPSNotations. Require Import Crypto.Util.HProp. Require Import Crypto.Util.Decidable. Import ListNotations. Local Open Scope list_scope. Local Open Scope Z_scope. Import EqNotations. Module Compilers. Import Language.Compilers. Import LanguageInversion.Compilers. Import LanguageWf.Compilers. Import UnderLetsProofs.Compilers. Import GENERATEDIdentifiersWithoutTypesProofs.Compilers. Import Rewriter.Compilers. Import expr.Notations. Import defaults. Module Import RewriteRules. Import Rewriter.Compilers.RewriteRules. Module Compile. Import Rewriter.Compilers.RewriteRules.Compile. Section with_type0. Context {base_type} {ident : type.type base_type -> Type}. Local Notation type := (type.type base_type). Local Notation expr := (@expr.expr base_type ident). Local Notation UnderLets := (@UnderLets.UnderLets base_type ident). Let type_base (t : base_type) : type := type.base t. Coercion type_base : base_type >-> type. Section with_var2. Context {var1 var2 : type -> Type}. Local Notation value'1 := (@value' base_type ident var1). Local Notation value'2 := (@value' base_type ident var2). Local Notation value1 := (@value base_type ident var1). Local Notation value2 := (@value base_type ident var2). Local Notation value_with_lets1 := (@value_with_lets base_type ident var1). Local Notation value_with_lets2 := (@value_with_lets base_type ident var2). Local Notation Base_value := (@Base_value base_type ident). Local Notation splice_under_lets_with_value := (@splice_under_lets_with_value base_type ident). Local Notation splice_value_with_lets := (@splice_value_with_lets base_type ident). Fixpoint wf_value' {with_lets : bool} G {t : type} : value'1 with_lets t -> value'2 with_lets t -> Prop := match t, with_lets with | type.base t, true => UnderLets.wf (fun G' => expr.wf G') G | type.base t, false => expr.wf G | type.arrow s d, _ => fun f1 f2 => (forall seg G' v1 v2, G' = (seg ++ G)%list -> @wf_value' false seg s v1 v2 -> @wf_value' true G' d (f1 v1) (f2 v2)) end. Definition wf_value G {t} : value1 t -> value2 t -> Prop := @wf_value' false G t. Definition wf_value_with_lets G {t} : value_with_lets1 t -> value_with_lets2 t -> Prop := @wf_value' true G t. Lemma wf_value'_Proper_list {with_lets} G1 G2 (HG1G2 : forall t v1 v2, List.In (existT _ t (v1, v2)) G1 -> List.In (existT _ t (v1, v2)) G2) t e1 e2 (Hwf : @wf_value' with_lets G1 t e1 e2) : @wf_value' with_lets G2 t e1 e2. Proof. revert Hwf; revert dependent with_lets; revert dependent G2; revert dependent G1; induction t; repeat first [ progress cbn in * | progress intros | solve [ eauto ] | progress subst | progress destruct_head'_or | progress inversion_sigma | progress inversion_prod | progress break_innermost_match_hyps | eapply UnderLets.wf_Proper_list; [ .. | solve [ eauto ] ] | wf_unsafe_t_step | match goal with H : _ |- _ => solve [ eapply H; [ .. | solve [ eauto ] ]; wf_t ] end ]. Qed. Lemma wf_Base_value G {t} v1 v2 (Hwf : @wf_value G t v1 v2) : @wf_value_with_lets G t (Base_value v1) (Base_value v2). Proof. destruct t; cbn; intros; subst; hnf; try constructor; try assumption. eapply wf_value'_Proper_list; [ | solve [ eauto ] ]; trivial. Qed. Lemma wf_splice_under_lets_with_value {T1 T2 t} G (x1 : @UnderLets var1 T1) (x2 : @UnderLets var2 T2) (e1 : T1 -> value_with_lets1 t) (e2 : T2 -> value_with_lets2 t) (Hx : UnderLets.wf (fun G' a1 a2 => wf_value_with_lets G' (e1 a1) (e2 a2)) G x1 x2) : wf_value_with_lets G (splice_under_lets_with_value x1 e1) (splice_under_lets_with_value x2 e2). Proof. cbv [wf_value_with_lets] in *. revert dependent G; induction t as [t|s IHs d IHd]; cbn [splice_under_lets_with_value wf_value']; intros. { eapply UnderLets.wf_splice; eauto. } { intros; subst; apply IHd. eapply UnderLets.wf_Proper_list_impl; [ | | solve [ eauto ] ]; wf_t. eapply wf_value'_Proper_list; [ | solve [ eauto ] ]; wf_t. } Qed. Lemma wf_splice_value_with_lets {t t'} G (x1 : value_with_lets1 t) (x2 : value_with_lets2 t) (e1 : value1 t -> value_with_lets1 t') (e2 : value2 t -> value_with_lets2 t') (Hx : wf_value_with_lets G x1 x2) (He : forall seg G' v1 v2, (G' = (seg ++ G)%list) -> wf_value G' v1 v2 -> wf_value_with_lets G' (e1 v1) (e2 v2)) : wf_value_with_lets G (splice_value_with_lets x1 e1) (splice_value_with_lets x2 e2). Proof. destruct t; cbn [splice_value_with_lets]. { eapply wf_splice_under_lets_with_value. eapply UnderLets.wf_Proper_list_impl; [ | | eassumption ]; trivial; wf_t. } { eapply wf_value'_Proper_list; [ | eapply He with (seg:=nil); hnf in Hx |- * ]. { eauto; subst G'; wf_t. } { reflexivity. } { intros; subst; eapply wf_value'_Proper_list; [ | solve [ eauto ] ]; wf_t. } } Qed. Section wf. Context (G : list { t : _ & var1 t * var2 t }%type). Inductive wf_anyexpr : forall t, @AnyExpr.anyexpr base_type ident var1 -> @AnyExpr.anyexpr base_type ident var2 -> Prop := | Wf_wrap {t : base_type} {e1 e2} : expr.wf (t:=t) G e1 e2 -> @wf_anyexpr (type.base t) (AnyExpr.wrap e1) (AnyExpr.wrap e2). End wf. End with_var2. End with_type0. Import AnyExpr. Section with_type. Context {ident : type.type base.type -> Type} {pident : Type} (full_types : pident -> Type) (invert_bind_args : forall t (idc : ident t) (pidc : pident), option (full_types pidc)) (type_of_pident : forall (pidc : pident), full_types pidc -> type.type base.type) (pident_to_typed : forall (pidc : pident) (args : full_types pidc), ident (type_of_pident pidc args)) (eta_ident_cps : forall {T : type.type base.type -> Type} {t} (idc : ident t) (f : forall t', ident t' -> T t'), T t) (eta_ident_cps_correct : forall T t idc f, @eta_ident_cps T t idc f = f _ idc) (of_typed_ident : forall {t}, ident t -> pident) (arg_types : pident -> option Type) (bind_args : forall {t} (idc : ident t), match arg_types (of_typed_ident idc) return Type with Some t => t | None => unit end) (pident_beq : pident -> pident -> bool) (try_make_transport_ident_cps : forall (P : pident -> Type) (idc1 idc2 : pident), ~> option (P idc1 -> P idc2)) (pident_to_typed_invert_bind_args_type : forall t idc p f, invert_bind_args t idc p = Some f -> t = type_of_pident p f) (pident_to_typed_invert_bind_args : forall t idc p f (pf : invert_bind_args t idc p = Some f), pident_to_typed p f = rew [ident] pident_to_typed_invert_bind_args_type t idc p f pf in idc) (pident_bl : forall p q, pident_beq p q = true -> p = q) (pident_lb : forall p q, p = q -> pident_beq p q = true) (try_make_transport_ident_cps_correct : forall P idc1 idc2 T k, try_make_transport_ident_cps P idc1 idc2 T k = k (match Sumbool.sumbool_of_bool (pident_beq idc1 idc2) with | left pf => Some (fun v => rew [P] pident_bl _ _ pf in v) | right _ => None end)). Local Notation type := (type.type base.type). Local Notation pattern := (@pattern.pattern pident). Local Notation expr := (@expr.expr base.type ident). Local Notation anyexpr := (@anyexpr base.type ident). Local Notation UnderLets := (@UnderLets.UnderLets base.type ident). Local Notation ptype := (type.type pattern.base.type). Local Notation value' := (@value' base.type ident). Local Notation value := (@value base.type ident). Local Notation value_with_lets := (@value_with_lets base.type ident). Local Notation Base_value := (@Base_value base.type ident). Local Notation splice_under_lets_with_value := (@splice_under_lets_with_value base.type ident). Local Notation splice_value_with_lets := (@splice_value_with_lets base.type ident). Local Notation reify := (@reify ident). Local Notation reflect := (@reflect ident). Local Notation rawexpr := (@rawexpr ident). Local Notation eval_decision_tree var := (@eval_decision_tree ident var pident full_types invert_bind_args type_of_pident pident_to_typed). Local Notation reveal_rawexpr e := (@reveal_rawexpr_cps ident _ e _ id). Local Notation bind_data_cps var := (@bind_data_cps ident var pident of_typed_ident arg_types bind_args try_make_transport_ident_cps). Local Notation bind_data e p := (@bind_data_cps _ e p _ id). Local Notation ptype_interp := (@ptype_interp ident). Local Notation binding_dataT var := (@binding_dataT ident var pident arg_types). Section with_var2. Context {var1 var2 : type -> Type}. Context (reify_and_let_binds_base_cps1 : forall (t : base.type), @expr var1 t -> forall T, (@expr var1 t -> @UnderLets var1 T) -> @UnderLets var1 T) (reify_and_let_binds_base_cps2 : forall (t : base.type), @expr var2 t -> forall T, (@expr var2 t -> @UnderLets var2 T) -> @UnderLets var2 T) (wf_reify_and_let_binds_base_cps : forall G (t : base.type) x1 x2 T1 T2 P (Hx : expr.wf G x1 x2) (e1 : expr t -> @UnderLets var1 T1) (e2 : expr t -> @UnderLets var2 T2) (He : forall x1 x2 G' seg, (G' = (seg ++ G)%list) -> expr.wf G' x1 x2 -> UnderLets.wf P G' (e1 x1) (e2 x2)), UnderLets.wf P G (reify_and_let_binds_base_cps1 t x1 T1 e1) (reify_and_let_binds_base_cps2 t x2 T2 e2)). Local Notation wf_value' := (@wf_value' base.type ident var1 var2). Local Notation wf_value := (@wf_value base.type ident var1 var2). Local Notation wf_value_with_lets := (@wf_value_with_lets base.type ident var1 var2). Local Notation reify_and_let_binds_cps1 := (@reify_and_let_binds_cps ident var1 reify_and_let_binds_base_cps1). Local Notation reify_and_let_binds_cps2 := (@reify_and_let_binds_cps ident var2 reify_and_let_binds_base_cps2). Local Notation rewrite_rulesT1 := (@rewrite_rulesT ident var1 pident arg_types). Local Notation rewrite_rulesT2 := (@rewrite_rulesT ident var2 pident arg_types). Local Notation eval_rewrite_rules1 := (@eval_rewrite_rules ident var1 pident full_types invert_bind_args type_of_pident pident_to_typed of_typed_ident arg_types bind_args try_make_transport_ident_cps). Local Notation eval_rewrite_rules2 := (@eval_rewrite_rules ident var2 pident full_types invert_bind_args type_of_pident pident_to_typed of_typed_ident arg_types bind_args try_make_transport_ident_cps). Fixpoint wf_reify {with_lets} G {t} : forall e1 e2, @wf_value' with_lets G t e1 e2 -> expr.wf G (@reify _ with_lets t e1) (@reify _ with_lets t e2) with wf_reflect {with_lets} G {t} : forall e1 e2, expr.wf G e1 e2 -> @wf_value' with_lets G t (@reflect _ with_lets t e1) (@reflect _ with_lets t e2). Proof using Type. { destruct t as [t|s d]; [ clear wf_reflect wf_reify | specialize (fun with_lets G => @wf_reify with_lets G d); specialize (fun with_lets G => wf_reflect with_lets G s) ]. { destruct with_lets; cbn; intros; auto using UnderLets.wf_to_expr. } { intros e1 e2 Hwf. change (reify e1) with (λ x, @reify _ _ d (e1 (@reflect _ _ s ($x))))%expr. change (reify e2) with (λ x, @reify _ _ d (e2 (@reflect _ _ s ($x))))%expr. constructor; intros; eapply wf_reify, Hwf with (seg:=cons _ nil); [ | eapply wf_reflect; constructor ]; wf_t. } } { destruct t as [t|s d]; [ clear wf_reflect wf_reify | specialize (fun with_lets G => @wf_reify with_lets G s); specialize (fun with_lets G => wf_reflect with_lets G d) ]. { destruct with_lets; repeat constructor; auto. } { intros e1 e2 Hwf. change (reflect e1) with (fun x => @reflect _ true d (e1 @ (@reify _ false s x)))%expr. change (reflect e2) with (fun x => @reflect _ true d (e2 @ (@reify _ false s x)))%expr. hnf; intros; subst. eapply wf_reflect; constructor; [ wf_t | ]. eapply wf_reify, wf_value'_Proper_list; [ | eassumption ]; wf_t. } } Qed. Lemma wf_reify_and_let_binds_cps {with_lets} G {t} x1 x2 (Hx : @wf_value' with_lets G t x1 x2) T1 T2 P (e1 : expr t -> @UnderLets var1 T1) (e2 : expr t -> @UnderLets var2 T2) (He : forall x1 x2 G' seg, (G' = (seg ++ G)%list) -> expr.wf G' x1 x2 -> UnderLets.wf P G' (e1 x1) (e2 x2)) : UnderLets.wf P G (@reify_and_let_binds_cps1 with_lets t x1 T1 e1) (@reify_and_let_binds_cps2 with_lets t x2 T2 e2). Proof. destruct t; [ destruct with_lets | ]; cbn [reify_and_let_binds_cps]; auto. { eapply UnderLets.wf_splice; [ eapply Hx | ]; wf_t; destruct_head'_ex; wf_t. eapply wf_reify_and_let_binds_base_cps; wf_t. eapply He; rewrite app_assoc; wf_t. } { eapply He with (seg:=nil); [ reflexivity | ]. eapply wf_reify; auto. } Qed. Inductive wf_rawexpr : list { t : type & var1 t * var2 t }%type -> forall {t}, @rawexpr var1 -> @expr var1 t -> @rawexpr var2 -> @expr var2 t -> Prop := | Wf_rIdent {t} G (idc : ident t) : wf_rawexpr G (rIdent idc (expr.Ident idc)) (expr.Ident idc) (rIdent idc (expr.Ident idc)) (expr.Ident idc) | Wf_rApp {s d} G f1 (f1e : @expr var1 (s -> d)) x1 (x1e : @expr var1 s) f2 (f2e : @expr var2 (s -> d)) x2 (x2e : @expr var2 s) : wf_rawexpr G f1 f1e f2 f2e -> wf_rawexpr G x1 x1e x2 x2e -> wf_rawexpr G (rApp f1 x1 (expr.App f1e x1e)) (expr.App f1e x1e) (rApp f2 x2 (expr.App f2e x2e)) (expr.App f2e x2e) | Wf_rExpr {t} G (e1 e2 : expr t) : expr.wf G e1 e2 -> wf_rawexpr G (rExpr e1) e1 (rExpr e2) e2 | Wf_rValue {t} G (v1 v2 : value t) : wf_value G v1 v2 -> wf_rawexpr G (rValue v1) (reify v1) (rValue v2) (reify v2). Lemma wf_rawexpr_Proper_list G1 G2 (HG1G2 : forall t v1 v2, List.In (existT _ t (v1, v2)) G1 -> List.In (existT _ t (v1, v2)) G2) t re1 e1 re2 e2 (Hwf : @wf_rawexpr G1 t re1 e1 re2 e2) : @wf_rawexpr G2 t re1 e1 re2 e2. Proof. revert dependent G2; induction Hwf; intros; constructor; eauto. { eapply expr.wf_Proper_list; eauto. } { eapply wf_value'_Proper_list; eauto. } Qed. (* Because [proj1] and [proj2] in the stdlib are opaque *) Local Notation proj1 x := (let (a, b) := x in a). Local Notation proj2 x := (let (a, b) := x in b). Definition eq_type_of_rawexpr_of_wf {t G re1 e1 re2 e2} (Hwf : @wf_rawexpr G t re1 e1 re2 e2) : type_of_rawexpr re1 = t /\ type_of_rawexpr re2 = t. Proof. split; destruct Hwf; reflexivity. Defined. Definition eq_expr_of_rawexpr_of_wf {t G re1 e1 re2 e2} (Hwf : @wf_rawexpr G t re1 e1 re2 e2) : (rew [expr] (proj1 (eq_type_of_rawexpr_of_wf Hwf)) in expr_of_rawexpr re1) = e1 /\ (rew [expr] (proj2 (eq_type_of_rawexpr_of_wf Hwf)) in expr_of_rawexpr re2) = e2. Proof. split; destruct Hwf; reflexivity. Defined. Definition eq_expr_of_rawexpr_of_wf' {t G re1 e1 re2 e2} (Hwf : @wf_rawexpr G t re1 e1 re2 e2) : expr_of_rawexpr re1 = (rew [expr] (eq_sym (proj1 (eq_type_of_rawexpr_of_wf Hwf))) in e1) /\ expr_of_rawexpr re2 = (rew [expr] (eq_sym (proj2 (eq_type_of_rawexpr_of_wf Hwf))) in e2). Proof. split; destruct Hwf; reflexivity. Defined. Lemma wf_expr_of_wf_rawexpr {t G re1 e1 re2 e2} (Hwf : @wf_rawexpr G t re1 e1 re2 e2) : expr.wf G e1 e2. Proof. induction Hwf; repeat (assumption || constructor || apply wf_reify). Qed. Lemma wf_expr_of_wf_rawexpr' {t G re1 e1 re2 e2} (Hwf : @wf_rawexpr G t re1 e1 re2 e2) : expr.wf G (rew [expr] (proj1 (eq_type_of_rawexpr_of_wf Hwf)) in expr_of_rawexpr re1) (rew [expr] (proj2 (eq_type_of_rawexpr_of_wf Hwf)) in expr_of_rawexpr re2). Proof. pose proof Hwf as Hwf'. rewrite <- (proj1 (eq_expr_of_rawexpr_of_wf Hwf)) in Hwf'. rewrite <- (proj2 (eq_expr_of_rawexpr_of_wf Hwf)) in Hwf'. eapply wf_expr_of_wf_rawexpr; eassumption. Qed. Lemma wf_value_of_wf_rawexpr {t G re1 e1 re2 e2} (Hwf : @wf_rawexpr G t re1 e1 re2 e2) : wf_value G (rew [value] (proj1 (eq_type_of_rawexpr_of_wf Hwf)) in value_of_rawexpr re1) (rew [value] (proj2 (eq_type_of_rawexpr_of_wf Hwf)) in value_of_rawexpr re2). Proof. pose proof (wf_expr_of_wf_rawexpr Hwf). destruct Hwf; cbn; try eapply wf_reflect; try assumption. Qed. Lemma reveal_rawexpr_cps_id {var} e T k : @reveal_rawexpr_cps ident var e T k = k (reveal_rawexpr e). Proof. cbv [reveal_rawexpr_cps]; break_innermost_match; try reflexivity. cbv [value value'] in *; expr.invert_match; try reflexivity. Qed. Lemma wf_reveal_rawexpr t G re1 e1 re2 e2 (Hwf : @wf_rawexpr G t re1 e1 re2 e2) : @wf_rawexpr G t (reveal_rawexpr re1) e1 (reveal_rawexpr re2) e2. Proof. pose proof (wf_expr_of_wf_rawexpr Hwf). destruct Hwf; cbv [reveal_rawexpr_cps id]; repeat first [ assumption | constructor | progress subst | progress cbn [reify eq_rect value value'] in * | progress destruct_head'_sig | progress destruct_head'_and | break_innermost_match_step | progress expr.invert_match | progress expr.inversion_wf_constr ]. Qed. Fixpoint wf_pbase_type_interp_cps (quant : quant_type) (t1 t2 : pattern.base.type) (K1 K2 : base.type -> Type) (P : forall t, K1 t -> K2 t -> Prop) {struct t1} : pbase_type_interp_cps quant t1 K1 -> pbase_type_interp_cps quant t2 K2 -> Prop := match t1, t2, quant with | pattern.base.type.any, pattern.base.type.any, qforall => fun v1 v2 => forall t : base.type, P _ (v1 t) (v2 t) | pattern.base.type.any, pattern.base.type.any, qexists => fun v1 v2 => { pf : projT1 v1 = projT1 v2 | P _ (rew pf in projT2 v1) (projT2 v2) } | pattern.base.type.type_base t1, pattern.base.type.type_base t2, _ => fun v1 v2 => { pf : t1 = t2 | P _ (rew [fun t : base.type.base => K1 t] pf in v1) v2 } | pattern.base.type.prod A1 B1, pattern.base.type.prod A2 B2, _ => @wf_pbase_type_interp_cps quant A1 A2 _ _ (fun A' => @wf_pbase_type_interp_cps quant B1 B2 _ _ (fun B' => P (A' * B')%etype)) | pattern.base.type.list A1, pattern.base.type.list A2, _ => @wf_pbase_type_interp_cps quant A1 A2 _ _ (fun A' => P (base.type.list A')) | pattern.base.type.any, _, _ | pattern.base.type.type_base _, _, _ | pattern.base.type.prod _ _, _, _ | pattern.base.type.list _, _, _ => fun _ _ => False end. Fixpoint wf_ptype_interp_cps (quant : quant_type) (t1 t2 : pattern.type) (K1 K2 : type -> Type) (P : forall t, K1 t -> K2 t -> Prop) {struct t1} : ptype_interp_cps quant t1 K1 -> ptype_interp_cps quant t2 K2 -> Prop := match t1, t2 with | type.base t1, type.base t2 => wf_pbase_type_interp_cps quant t1 t2 _ _ (fun t => P (type.base t)) | type.arrow s1 d1, type.arrow s2 d2 => wf_ptype_interp_cps quant s1 s2 _ _ (fun s => wf_ptype_interp_cps quant d1 d2 _ _ (fun d => P (type.arrow s d))) | type.base _, _ | type.arrow _ _, _ => fun _ _ => False end. Definition wf_ptype_interp_id G {quant t1 t2} : @ptype_interp var1 quant t1 id -> @ptype_interp var2 quant t2 id -> Prop := @wf_ptype_interp_cps quant t1 t2 _ _ (@wf_value G). Fixpoint wf_binding_dataT G (p1 p2 : pattern) : @binding_dataT var1 p1 -> @binding_dataT var2 p2 -> Prop := match p1, p2 with | pattern.Wildcard t1, pattern.Wildcard t2 => wf_ptype_interp_id G | pattern.Ident idc1, pattern.Ident idc2 => fun v1 v2 => { pf : idc1 = idc2 | (rew [fun idc => @binding_dataT _ (pattern.Ident idc)] pf in v1) = v2 } | pattern.App f1 x1, pattern.App f2 x2 => fun v1 v2 => @wf_binding_dataT G _ _ (fst v1) (fst v2) /\ @wf_binding_dataT G _ _ (snd v1) (snd v2) | pattern.Wildcard _, _ | pattern.Ident _, _ | pattern.App _ _, _ => fun _ _ => False end. Lemma bind_base_cps_id t1 t2 K v T k : @bind_base_cps t1 t2 K v T k = k (@bind_base_cps t1 t2 K v _ id). Proof using Type. revert t2 K v T k; induction t1, t2; intros; cbn [bind_base_cps]; try reflexivity; rewrite_type_transport_correct; break_innermost_match; try reflexivity; repeat first [ progress subst | progress inversion_option | reflexivity | match goal with | [ H : _ |- _ ] => rewrite H; (reflexivity || break_innermost_match_step) end ]. Qed. Lemma wf_bind_base t1 t1' t2 t2' K1 K2 v1 v2 (Ht1 : t1 = t2) (Ht2 : t1' = t2') (P : forall t, K1 t -> K2 t -> Prop) (Pv : P _ (rew Ht2 in v1) v2) : option_eq (@wf_pbase_type_interp_cps _ _ _ _ _ P) (@bind_base_cps t1 t1' K1 v1 _ id) (@bind_base_cps t2 t2' K2 v2 _ id). Proof. subst t2' t2; revert t1' K1 v1 K2 v2 P Pv. induction t1, t1'; cbn [wf_pbase_type_interp_cps bind_base_cps]; intros; cbv [cpsreturn id cpsbind cpscall cps_option_bind]; cbn [option_eq projT1 projT2]; repeat first [ (exists eq_refl) | reflexivity | progress subst | progress base.type.inversion_type | progress destruct_head' False | congruence | progress cbn [eq_rect option_eq] in * | progress cbv [id] in * | solve [ eauto ] | progress rewrite_type_transport_correct | progress type_beq_to_eq | progress break_match_step ltac:(fun v => let h := head v in constr_eq h (@Sumbool.sumbool_of_bool)) | rewrite bind_base_cps_id; set (@bind_base_cps _ _ _ _ _ id) at 1 | match goal with | [ H : forall P : (forall x, _ -> _ -> Prop), P _ _ _ -> False |- _ ] => specialize (H (fun _ _ _ => True) I) | [ H : forall P : (forall x, _ -> _ -> Prop), P _ _ _ -> Some _ = None |- _ ] => specialize (H (fun _ _ _ => True) I) | [ X := Some _ |- _ ] => subst X | [ X := None |- _ ] => subst X | [ HP : context[?P _ ?v1 ?v2], H' : _, X := @bind_base_cps ?t1 ?t2 ?K1 ?v1 _ (fun x => x), Y := @bind_base_cps ?t1' ?t2 ?K2 ?v2 _ (fun y => y) |- _ ] => specialize (H' t2 K1 v1 K2 v2); destruct (@bind_base_cps t1 t2 K1 v1 _ (fun x => x)) eqn:?, (@bind_base_cps t1' t2 K2 v2 _ (fun x => x)) eqn:? end ]. Qed. Lemma bind_value_cps_id t1 t2 K v T k : @bind_value_cps t1 t2 K v T k = k (@bind_value_cps t1 t2 K v _ id). Proof using Type. revert t2 K v T k; induction t1, t2; intros; cbn [bind_value_cps]; try reflexivity; [ apply bind_base_cps_id | ]. cbv [cps_option_bind cpscall cpsreturn cpsbind]. repeat first [ progress subst | progress inversion_option | reflexivity | match goal with | [ H : _ |- _ ] => rewrite H; (reflexivity || break_innermost_match_step) end ]. Qed. Lemma wf_bind_value t1 t1' t2 t2' K1 K2 v1 v2 (Ht1 : t1 = t2) (Ht2 : t1' = t2') (P : forall t, K1 t -> K2 t -> Prop) (Hv : P _ (rew Ht2 in v1) v2) : option_eq (@wf_ptype_interp_cps _ _ _ _ _ P) (@bind_value_cps t1 t1' K1 v1 _ id) (@bind_value_cps t2 t2' K2 v2 _ id). Proof. subst t2' t2; revert t1' K1 v1 K2 v2 P Hv. induction t1, t1'; cbn [wf_ptype_interp_cps bind_value_cps]; cbv [id cpsbind cpscall cpsreturn cps_option_bind]; cbn [option_eq]; intros; try reflexivity. { unshelve eapply wf_bind_base; eauto. } { repeat first [ progress destruct_head' False | congruence | progress cbn [eq_rect option_eq] in * | progress cbv [id] in * | solve [ eauto ] | rewrite bind_value_cps_id; set (@bind_value_cps _ _ _ _ _ id) at 1 | match goal with | [ H : forall P : (forall x, _ -> _ -> Prop), P _ _ _ -> False |- _ ] => specialize (H (fun _ _ _ => True) I) | [ H : forall P : (forall x, _ -> _ -> Prop), P _ _ _ -> Some _ = None |- _ ] => specialize (H (fun _ _ _ => True) I) | [ X := Some _ |- _ ] => subst X | [ X := None |- _ ] => subst X | [ HP : context[?P _ ?v1 ?v2], H' : _, X := @bind_value_cps ?t1 ?t2 ?K1 ?v1 _ (fun x => x), Y := @bind_value_cps ?t1' ?t2 ?K2 ?v2 _ (fun y => y) |- _ ] => specialize (H' t2 K1 v1 K2 v2); destruct (@bind_value_cps t1 t2 K1 v1 _ (fun x => x)) eqn:?, (@bind_value_cps t1' t2 K2 v2 _ (fun x => x)) eqn:? end ]. } Qed. Lemma bind_data_cps_id {var} e p T k : @bind_data_cps var e p T k = k (bind_data e p). Proof using try_make_transport_ident_cps_correct. revert p T k; induction e, p; intros; cbn [bind_data_cps]; try (reflexivity || apply bind_value_cps_id); cbv [cps_option_bind cpscall cpsreturn cpsbind]; repeat first [ progress subst | progress inversion_option | reflexivity | rewrite try_make_transport_ident_cps_correct | match goal with | [ H : _ |- _ ] => rewrite H; (reflexivity || break_innermost_match_step) end | break_innermost_match_step ]. Qed. Lemma wf_bind_data t G re1 e1 re2 e2 p1 p2 (Hwf : @wf_rawexpr G t re1 e1 re2 e2) (Hp : p1 = p2) : option_eq (@wf_binding_dataT G p1 p2) (bind_data re1 p1) (bind_data re2 p2). Proof. subst p2; revert p1; induction Hwf, p1; cbn [bind_data_cps value_of_rawexpr]; rewrite_type_transport_correct; rewrite ?try_make_transport_ident_cps_correct. all: repeat first [ (exists eq_refl) | exact I | reflexivity | unshelve eapply wf_bind_value | progress break_match_step ltac:(fun v => let h := head v in constr_eq h (@Sumbool.sumbool_of_bool)) | progress cbn [eq_rect wf_binding_dataT fst snd option_eq] in * | progress cbv [id] in * | progress subst | progress inversion_option | apply wf_reflect | match goal with | [ |- context[pident_bl ?a ?b ?pf] ] => generalize (pident_bl a b pf); intros | [ X := Some _ |- _ ] => subst X | [ X := None |- _ ] => subst X | [ X := @bind_data_cps _ ?e ?p _ (fun y => y), H : context[@bind_data_cps _ ?e _ _ (fun x => x)] |- _ ] => pose proof (H p); destruct (@bind_data_cps _ e p _ (fun y => y)) eqn:? end | rewrite bind_data_cps_id; set (@bind_data _ _) at 1 | solve [ auto ] | eapply wf_expr_of_wf_rawexpr; eassumption | wf_safe_t_step ]. Qed. Lemma swap_list_None_iff {A} (i j : nat) (ls : list A) : swap_list i j ls = None <-> (length ls <= i \/ length ls <= j)%nat. Proof. rewrite <- !nth_error_None. cbv [swap_list]; break_innermost_match; intuition congruence. Qed. Lemma swap_list_Some_length {A} (i j : nat) (ls ls' : list A) : swap_list i j ls = Some ls' -> (i < length ls /\ j < length ls /\ length ls' = length ls)%nat. Proof. cbv [swap_list]; break_innermost_match; intros; inversion_option; subst. repeat match goal with H : _ |- _ => apply nth_error_value_length in H end. autorewrite with distr_length; tauto. Qed. Local Ltac fin_handle_list := destruct_head' iff; destruct_head'_and; cbn [length] in *; try solve [ destruct_head'_or; exfalso; repeat match goal with | [ H : ?T, H' : ?T |- _ ] => clear H' | [ H : ?T |- _ ] => lazymatch type of H with | _ = _ :> nat => fail | (_ <= _)%nat => fail | (_ < _)%nat => fail | ~_ = _ :> nat => fail | ~(_ <= _)%nat => fail | ~(_ < _)%nat => fail | _ => clear H end | [ H : context[length ?ls] |- _ ] => generalize dependent (length ls); intros | _ => progress subst | _ => lia end ]. Local Ltac handle_nth_error := repeat match goal with | [ H : nth_error _ _ = None |- _ ] => rewrite nth_error_None in H | [ H : nth_error _ _ = Some _ |- _ ] => unique pose proof (@nth_error_value_length _ _ _ _ H) end; fin_handle_list. Lemma nth_error_swap_list {A} {i j : nat} {ls ls' : list A} : swap_list i j ls = Some ls' -> forall k, nth_error ls' k = if Nat.eq_dec k i then nth_error ls j else if Nat.eq_dec k j then nth_error ls i else nth_error ls k. Proof. cbv [swap_list]; break_innermost_match; intros; inversion_option; subst; rewrite ?nth_set_nth; distr_length; break_innermost_match; try congruence; try lia; handle_nth_error. Qed. Local Ltac handle_swap_list := repeat match goal with | [ H : swap_list _ _ _ = None |- _ ] => rewrite swap_list_None_iff in H | [ H : swap_list _ _ _ = Some _ |- _ ] => unique pose proof (@swap_list_Some_length _ _ _ _ _ H) end; fin_handle_list. Fixpoint wf_eval_decision_tree' {T1 T2} G d (P : option T1 -> option T2 -> Prop) (HPNone : P None None) {struct d} : forall (ctx1 : list (@rawexpr var1)) (ctx2 : list (@rawexpr var2)) (ctxe : list { t : type & @expr var1 t * @expr var2 t }%type) (Hctx1 : length ctx1 = length ctxe) (Hctx2 : length ctx2 = length ctxe) (Hwf : forall t re1 e1 re2 e2, List.In ((re1, re2), existT _ t (e1, e2)) (List.combine (List.combine ctx1 ctx2) ctxe) -> @wf_rawexpr G t re1 e1 re2 e2) cont1 cont2 (Hcont : forall n ls1 ls2, length ls1 = length ctxe -> length ls2 = length ctxe -> (forall t re1 e1 re2 e2, List.In ((re1, re2), existT _ t (e1, e2)) (List.combine (List.combine ls1 ls2) ctxe) -> @wf_rawexpr G t re1 e1 re2 e2) -> (cont1 n ls1 = None <-> cont2 n ls2 = None) /\ P (cont1 n ls1) (cont2 n ls2)), ((@eval_decision_tree var1 T1 ctx1 d cont1) = None <-> (@eval_decision_tree var2 T2 ctx2 d cont2) = None) /\ P (@eval_decision_tree var1 T1 ctx1 d cont1) (@eval_decision_tree var2 T2 ctx2 d cont2). Proof using pident_to_typed_invert_bind_args. clear -HPNone pident_to_typed_invert_bind_args wf_eval_decision_tree'. specialize (fun d => wf_eval_decision_tree' T1 T2 G d P HPNone). destruct d; cbn [eval_decision_tree]; intros; try (clear wf_eval_decision_tree'; tauto). { let d := match goal with d : decision_tree |- _ => d end in specialize (wf_eval_decision_tree' d). cbv [Option.sequence Option.bind Option.sequence_return]; break_innermost_match; specialize_all_ways; handle_swap_list; repeat first [ assumption | match goal with | [ H : ?T, H' : ?T |- _ ] => clear H' end | progress inversion_option | progress destruct_head'_and | progress destruct_head' iff | progress specialize_by_assumption | progress cbn [length] in * | match goal with | [ H : ?x = Some _, H' : context[?x] |- _ ] => rewrite H in H' | [ H : ?x = None, H' : context[?x] |- _ ] => rewrite H in H' | [ H : length ?x = length ?y, H' : context[length ?x] |- _ ] => rewrite H in H' | [ H : S _ = S _ |- _ ] => inversion H; clear H | [ H : S _ = length ?ls |- _ ] => is_var ls; destruct ls; cbn [length] in H; inversion H; clear H end | congruence | apply conj | progress intros | progress destruct_head'_or ]. } { let d := match goal with d : decision_tree |- _ => d end in pose proof (wf_eval_decision_tree' d) as IHd. let d := match goal with d : option decision_tree |- _ => d end in pose proof (match d as d' return match d' with Some _ => _ | None => True end with | Some d => wf_eval_decision_tree' d | None => I end) as IHapp_case. all: destruct ctx1, ctx2; cbn [length] in *; try (clear wf_eval_decision_tree'; (tauto || congruence)); []. all: lazymatch goal with | [ |- _ /\ ?P match ?d with | TryLeaf _ _ => (?res1 ;; ?ev1)%option | _ => _ end match ?d with | TryLeaf _ _ => (?res2 ;; ?ev2)%option | _ => _ end ] => cut (((res1 = None <-> res2 = None) /\ P res1 res2) /\ ((ev1 = None <-> ev2 = None) /\ P ev1 ev2)); [ clear wf_eval_decision_tree'; intro; destruct_head'_and; destruct_head' iff; destruct d; destruct res1 eqn:?, res2 eqn:?; cbn [Option.sequence]; solve [ intuition (congruence || eauto) ] | ] end. all: split; [ | clear wf_eval_decision_tree'; eapply IHd; eassumption ]. (** We use the trick that [induction] inside [Fixpoint] gives us nested [fix]es that pass the guarded checker, as long as we're careful about how we do things *) let icases := match goal with d : list (_ * decision_tree) |- _ => d end in induction icases as [|icase icases IHicases]; [ | pose proof (wf_eval_decision_tree' (snd icase)) as IHicase ]; clear wf_eval_decision_tree'. (** now we can stop being super-careful about [destruct] ordering because, if we're [Guarded] here (which we are), then we cannot break guardedness from this point on, because we've cleared the bare fixpoint after specializing it to valid arguments *) 2: revert IHicases. all: repeat (rewrite reveal_rawexpr_cps_id; set (reveal_rawexpr _)). all: repeat match goal with H := reveal_rawexpr _ |- _ => subst H end. all: repeat first [ match goal with | [ H : S _ = S _ |- _ ] => inversion H; clear H | [ H : S _ = length ?ls |- _ ] => is_var ls; destruct ls; cbn [length] in H; inversion H; clear H | [ H : forall t re1 e1 re2 e2, _ = _ \/ _ -> _ |- _ ] => pose proof (H _ _ _ _ _ (or_introl eq_refl)); specialize (fun t re1 e1 re2 e2 pf => H t re1 e1 re2 e2 (or_intror pf)) | [ H : wf_rawexpr ?G ?r ?e ?r' ?e' |- context[reveal_rawexpr ?r] ] => apply wf_reveal_rawexpr in H; revert H; generalize (reveal_rawexpr r) (reveal_rawexpr r'); clear r r'; intros r r' H; destruct H | [ H1 : length ?ctx1 = length ?ctxe', H2 : length ?ctx2 = length ?ctxe', H1' : wf_rawexpr _ ?f1 ?f1e ?f2 ?f2e, H2' : wf_rawexpr _ ?x1 ?x1e ?x2 ?x2e |- _ /\ ?P (@eval_decision_tree _ _ (?f1 :: ?x1 :: ?ctx1) _ _) (@eval_decision_tree _ _ (?f2 :: ?x2 :: ?ctx2) _ _) ] => apply IHapp_case with (ctxe:=existT _ _ (f1e, f2e) :: existT _ _ (x1e, x2e) :: ctxe'); clear IHapp_case | [ H : ?x = ?x -> _ |- _ ] => specialize (H eq_refl) | [ H : ?x = ?x |- _ ] => clear H | [ |- context [pident_to_typed_invert_bind_args_type ?t ?idc ?p ?f ?pf] ] => generalize (type_of_pident p f) (pident_to_typed_invert_bind_args_type t idc p f pf); clear p f pf; intros; subst end | tauto | progress subst | progress cbn [length combine List.In fold_right fst snd projT1 projT2 eq_rect Option.sequence Option.sequence_return eq_rect] in * | progress inversion_sigma | progress inversion_prod | progress destruct_head'_sigT | progress destruct_head'_prod | progress destruct_head'_and | progress destruct_head' iff; progress specialize_by (exact eq_refl) | congruence | break_innermost_match_step | progress intros | progress destruct_head'_or | solve [ auto ] | match goal with | [ |- wf_rawexpr _ _ _ _ _ ] => constructor | [ H : context[(_ = None <-> _ = None) /\ ?P _ _] |- (_ = None <-> _ = None) /\ ?P _ _ ] => apply H | [ H : fold_right _ None ?ls = None, H' : fold_right _ None ?ls = Some None |- _ ] => exfalso; clear -H H'; is_var ls; destruct ls; cbn [fold_right] in H, H'; break_match_hyps; congruence end | progress break_match | progress cbv [option_bind' Option.bind] | unshelve erewrite pident_to_typed_invert_bind_args; [ shelve | shelve | eassumption | ] | match goal with | [ |- _ /\ ?P (Option.sequence ?x ?y) (Option.sequence ?x' ?y') ] => cut ((x = None <-> x' = None) /\ P x x'); [ destruct x, x'; cbn [Option.sequence]; solve [ intuition congruence ] | ] | [ H1 : length ?ctx1 = length ?ctxe', H2 : length ?ctx2 = length ?ctxe' |- _ /\ ?P (@eval_decision_tree _ _ ?ctx1 _ _) (@eval_decision_tree _ _ ?ctx2 _ _) ] => apply IHicase with (ctxe := ctxe'); auto end ]. } { let d := match goal with d : decision_tree |- _ => d end in specialize (wf_eval_decision_tree' d); rename wf_eval_decision_tree' into IHd. break_innermost_match; handle_swap_list; try tauto; []. lazymatch goal with | [ H : swap_list ?i ?j _ = _ |- _ ] => destruct (swap_list i j ctxe) as [ctxe'|] eqn:? end; handle_swap_list; []. eapply IHd with (ctxe:=ctxe'); clear IHd; try congruence; [ | intros; break_innermost_match; handle_swap_list; apply Hcont; try congruence; [] ]; clear Hcont. all: intros ? ? ? ? ? HIn. 1: eapply Hwf; clear Hwf. 2: lazymatch goal with | [ H : context[List.In _ (combine _ ctxe') -> wf_rawexpr _ _ _ _ _] |- _ ] => apply H; clear H end. all: apply In_nth_error_value in HIn; destruct HIn as [n' HIn]. all: lazymatch goal with | [ H : swap_list ?i ?j _ = _ |- _ ] => apply nth_error_In with (n:=if Nat.eq_dec i n' then j else if Nat.eq_dec j n' then i else n') end. all: repeat first [ reflexivity | match goal with | [ H : context[nth_error (combine _ _) _] |- _ ] => rewrite !nth_error_combine in H | [ |- context[nth_error (combine _ _) _] ] => rewrite !nth_error_combine | [ H : swap_list _ _ ?ls = Some ?ls', H' : context[nth_error ?ls' ?k] |- _ ] => rewrite (nth_error_swap_list H) in H' | [ H : nth_error ?ls ?k = _, H' : context[nth_error ?ls ?k] |- _ ] => rewrite H in H' end | progress subst | progress inversion_option | progress inversion_prod | congruence | progress handle_nth_error | break_innermost_match_step | break_innermost_match_hyps_step ]. } Qed. Lemma wf_eval_decision_tree {T1 T2} G d (P : option T1 -> option T2 -> Prop) (HPNone : P None None) : forall (ctx1 : list (@rawexpr var1)) (ctx2 : list (@rawexpr var2)) (ctxe : list { t : type & @expr var1 t * @expr var2 t }%type) (Hctx1 : length ctx1 = length ctxe) (Hctx2 : length ctx2 = length ctxe) (Hwf : forall t re1 e1 re2 e2, List.In ((re1, re2), existT _ t (e1, e2)) (List.combine (List.combine ctx1 ctx2) ctxe) -> @wf_rawexpr G t re1 e1 re2 e2) cont1 cont2 (Hcont : forall n ls1 ls2, length ls1 = length ctxe -> length ls2 = length ctxe -> (forall t re1 e1 re2 e2, List.In ((re1, re2), existT _ t (e1, e2)) (List.combine (List.combine ls1 ls2) ctxe) -> @wf_rawexpr G t re1 e1 re2 e2) -> (cont1 n ls1 = None <-> cont2 n ls2 = None) /\ P (cont1 n ls1) (cont2 n ls2)), P (@eval_decision_tree var1 T1 ctx1 d cont1) (@eval_decision_tree var2 T2 ctx2 d cont2). Proof using pident_to_typed_invert_bind_args. intros; eapply wf_eval_decision_tree'; eassumption. Qed. (* Local Notation opt_anyexprP ivar := (fun should_do_again : bool => UnderLets (@AnyExpr.anyexpr base.type ident (if should_do_again then ivar else var))) (only parsing). Local Notation opt_anyexpr ivar := (option (sigT (opt_anyexprP ivar))) (only parsing). Definition rewrite_ruleTP := (fun p : pattern => binding_dataT p -> forall T, (opt_anyexpr value -> T) -> T). Definition rewrite_ruleT := sigT rewrite_ruleTP. Definition rewrite_rulesT := (list rewrite_ruleT). Definition ERROR_BAD_REWRITE_RULE {t} (pat : pattern) (value : expr t) : expr t. exact value. Qed. *) (* Fixpoint natural_type_of_pattern_binding_data {var} (p : pattern) : @binding_dataT var p -> option { t : type & @expr var t }. Proof. refine match p with | pattern.Wildcard t => _ | pattern.Ident idc => _ | pattern.App f x => _ end. all: cbn. Focus 2. Fixpoint natural_of_ptype_interp {var} (t : ptype) k (K : forall t, k t -> option { t : type & @expr var t }) {struct t} : @ptype_interp var qexists t k -> option { t : type & @expr var t }. refine match t with | type.base t => _ | type.arrow s d => _ end. all: cbn. Focus 2. Fixpoint natural_of_pbase_type_interp {var} (t : ptype) k (K : forall t, k t -> option { t : type & @expr var t }) {struct t} : @ptype_interp var qexists t k -> option { t : type & @expr var t }. refine match t with | type.base t => _ | type.arrow s d => _ end. all: cbn. refine Proof. refine match p with | pattern.Wildcard t => _ | pattern.Ident idc => _ | pattern.App f x => _ end. cbn. *) Definition rewrite_rules_goodT (rew1 : rewrite_rulesT1) (rew2 : rewrite_rulesT2) : Prop := length rew1 = length rew2 /\ (forall p r, List.In (existT _ p r) rew1 -> forall v T k, r v T k = k (r v _ id)) /\ (forall p r, List.In (existT _ p r) rew2 -> forall v T k, r v T k = k (r v _ id)) /\ (forall p1 r1 p2 r2, List.In (existT _ p1 r1, existT _ p2 r2) (combine rew1 rew2) -> p1 = p2 /\ (forall G v1 v2, wf_binding_dataT G p1 p2 v1 v2 -> option_eq (fun rv1 rv2 => exists t : base.type, (* TODO: FIXME: This should be the natural type of the rewrite rule, probably *) match projT1 rv1 as sda1, projT1 rv2 as sda2 return UnderLets _ (@AnyExpr.anyexpr base.type ident (if sda1 then _ else _)) -> UnderLets _ (@AnyExpr.anyexpr base.type ident (if sda2 then _ else _)) -> Prop with | true, true => UnderLets.wf (fun G' v1 v2 => exists (pf1 : anyexpr_ty v1 = t) (pf2 : anyexpr_ty v2 = t), forall G'', (forall t' v1' v2', List.In (existT _ t' (v1', v2')) G'' -> wf_value G v1' v2') -> expr.wf G'' (rew [fun t : base.type => expr t] pf1 in unwrap v1) (rew [fun t : base.type => expr t] pf2 in unwrap v2)) G | false, false => UnderLets.wf (fun G' => wf_anyexpr G' t) G | true, false | false, true => fun _ _ => False end (projT2 rv1) (projT2 rv2)) (r1 v1 _ id) (r2 v2 _ id))). Local Ltac do_eq_type_of_rawexpr_of_wf := repeat first [ match goal with | [ |- context[rew [fun t => UnderLets ?var (@?P t)] ?pf in UnderLets.Base ?v] ] => rewrite <- (fun x y p => @Equality.ap_transport _ P (fun t => UnderLets var (P t)) x y p (fun _ => UnderLets.Base)) | [ |- UnderLets.wf _ _ _ _ ] => constructor | [ |- (?x = ?x <-> ?y = ?y) /\ _ ] => split; [ tauto | ] end | apply wf_expr_of_wf_rawexpr' ]. Local Ltac solve_eq_type_of_rawexpr_of_wf := solve [ do_eq_type_of_rawexpr_of_wf ]. Local Ltac gen_do_eq_type_of_rawexpr_of_wf := match goal with | [ |- context[eq_type_of_rawexpr_of_wf ?Hwf] ] => let H' := fresh in pose proof (wf_expr_of_wf_rawexpr Hwf) as H'; rewrite <- (proj1 (eq_expr_of_rawexpr_of_wf Hwf)), <- (proj2 (eq_expr_of_rawexpr_of_wf Hwf)) in H'; destruct Hwf; cbn in H'; cbn [eq_type_of_rawexpr_of_wf eq_rect expr_of_rawexpr type_of_rawexpr] end. (* move me? *) Local Lemma ap_transport_splice {var T} (A B : T -> Type) (x y : T) (p : x = y) (v : @UnderLets var (A x)) (f : A x -> @UnderLets var (B x)) : (rew [fun t => @UnderLets var (B t)] p in UnderLets.splice v f) = UnderLets.splice (rew [fun t => @UnderLets var (A t)] p in v) (fun v => rew [fun t => @UnderLets var (B t)] p in f (rew [A] (eq_sym p) in v)). Proof. case p; reflexivity. Defined. Local Transparent ERROR_BAD_REWRITE_RULE. Lemma ERROR_BAD_REWRITE_RULE_id {var t p v} : @ERROR_BAD_REWRITE_RULE ident var pident t p v = v. Proof. exact eq_refl. Qed. Local Opaque ERROR_BAD_REWRITE_RULE. Lemma wf_eval_rewrite_rules (do_again1 : forall t : base.type, @expr.expr base.type ident (@value var1) t -> @UnderLets var1 (@expr var1 t)) (do_again2 : forall t : base.type, @expr.expr base.type ident (@value var2) t -> @UnderLets var2 (@expr var2 t)) (wf_do_again : forall G (t : base.type) e1 e2, expr.wf nil e1 e2 -> UnderLets.wf (fun G' => expr.wf G') G (@do_again1 t e1) (@do_again2 t e2)) (d : @decision_tree pident) (rew1 : rewrite_rulesT1) (rew2 : rewrite_rulesT2) (Hrew : rewrite_rules_goodT rew1 rew2) (re1 : @rawexpr var1) (re2 : @rawexpr var2) {t} G e1 e2 (Hwf : @wf_rawexpr G t re1 e1 re2 e2) : UnderLets.wf (fun G' => expr.wf G') G (rew [fun t => @UnderLets var1 (expr t)] (proj1 (eq_type_of_rawexpr_of_wf Hwf)) in (eval_rewrite_rules1 do_again1 d rew1 re1)) (rew [fun t => @UnderLets var2 (expr t)] (proj2 (eq_type_of_rawexpr_of_wf Hwf)) in (eval_rewrite_rules2 do_again2 d rew2 re2)). Proof. cbv [eval_rewrite_rules Option.sequence_return]. cbv [rewrite_rules_goodT] in Hrew. eapply wf_eval_decision_tree with (ctxe:=[existT _ t (e1, e2)]); cbn [length combine]; try solve [ reflexivity | cbn [combine In]; wf_t; tauto ]. all: repeat first [ progress do_eq_type_of_rawexpr_of_wf | match goal with | [ |- (Some _ = None <-> Some _ = None) /\ _ ] => split; [ clear; solve [ intuition congruence ] | ] | [ Hrew : length _ = length _, H : nth_error _ _ = None, H' : nth_error _ _ = Some _ |- _ ] => exfalso; rewrite nth_error_None in H; apply nth_error_value_length in H'; clear -Hrew H H'; try lia | [ |- context[rew [fun t => @UnderLets ?varp (@?P t)] ?pf in (@UnderLets.splice ?base_type ?ident ?var ?A ?B ?a ?b)] ] => rewrite (@ap_transport_splice varp _ (fun _ => _) P _ _ pf a b : (rew [fun t => @UnderLets varp (P t)] pf in (@UnderLets.splice base_type ident var A B a b)) = _) end | progress intros | progress subst | progress destruct_head'_and | progress destruct_head'_ex | progress destruct_head' False | progress split_and | progress specialize_by (exact eq_refl) | progress cbn [length combine In Option.bind option_eq fst snd projT1 projT2 UnderLets.splice anyexpr_ty unwrap eq_rect] in * | progress cbv [rewrite_ruleT id] in * | progress destruct_head'_sigT | rewrite Equality.transport_const | progress rewrite_type_transport_correct | progress type_beq_to_eq | congruence | progress destruct_head' (@wf_anyexpr) | progress destruct_head'_bool | progress break_match_step ltac:(fun v => let h := head v in constr_eq h (@Sumbool.sumbool_of_bool)) | eapply UnderLets.wf_splice; [ solve [ eauto ] | ] | match goal with | [ H : S _ = S _ |- _ ] => inversion H; clear H | [ H : length ?ls = O |- _ ] => is_var ls; destruct ls | [ H : length ?ls = S _ |- _ ] => is_var ls; destruct ls | [ H : ?x = ?x |- _ ] => clear H | [ H : forall a b c d e, _ = _ \/ False -> _ |- _ ] => specialize (H _ _ _ _ _ (or_introl eq_refl)) | [ |- context[@nth_error ?A ?ls ?n] ] => destruct (@nth_error A ls n) eqn:? | [ H : forall a b c d, In _ _ -> _, H' : nth_error _ ?n = Some _ |- _ ] => specialize (fun a b c d pf => H a b c d (@nth_error_In _ _ n _ pf)) | [ H : forall a b, In _ _ -> _, H' : nth_error _ ?n = Some _ |- _ ] => specialize (fun a b pf => H a b (@nth_error_In _ _ n _ pf)) | [ H : context[nth_error (combine ?l1 ?l2) ?n] |- _ ] => rewrite (@nth_error_combine _ _ n) in H | [ H : ?x = Some _, H' : context[?x] |- _ ] => rewrite H in H' | [ H : forall a b c d, Some _ = Some _ -> _ |- _ ] => specialize (H _ _ _ _ eq_refl) | [ H : forall a b, Some _ = Some _ -> _ |- _ ] => specialize (H _ _ eq_refl) | [ H : forall v T k, ?f v T k = k (?f v _ (fun x => x)) |- context[?f ?v' ?T' ?k'] ] => (tryif (let __ := constr:(eq_refl : k' = (fun x => x)) in idtac) then fail else rewrite (H v' T' k')) | [ H : forall G v1 v2, wf_binding_dataT G ?a ?b v1 v2 -> _, H' : wf_binding_dataT ?G' ?a ?b ?v1' ?v2' |- _ ] => specialize (H _ _ _ H') | [ X := Some _ |- _ ] => subst X | [ X := None |- _ ] => subst X | [ X := @bind_data_cps ?var1 ?r1 ?p1 ?T1 (fun x => x), Y := @bind_data_cps ?var2 ?r2 ?p2 ?T2 (fun y => y) |- _ ] => pose proof (fun Hp : p1 = p2 => @wf_bind_data _ _ r1 _ r2 _ p1 p2 ltac:(eassumption) Hp); cbv [id] in *; destruct (@bind_data_cps var1 r1 p1 T1 (fun x => x)), (@bind_data_cps var2 r2 p2 T2 (fun y => y)) end | rewrite bind_data_cps_id; set (bind_data _ _) | match goal with | [ H : option_eq _ ?x ?y |- context[?x] ] => destruct x eqn:?, y eqn:?; cbn [option_eq] in H | [ H : wf_value ?G ?v1 ?v2 |- wf_value' (?x0::?seg' ++ ?G) (?v1 _) (?v2 _) ] => apply (H (x0::seg')); [ reflexivity | apply wf_reflect ]; solve [ wf_t ] | [ |- UnderLets.wf _ _ (rew (proj1 (eq_type_of_rawexpr_of_wf ?Hwf)) in match type_of_rawexpr _ with _ => _ end _ _) (rew (proj2 (eq_type_of_rawexpr_of_wf ?Hwf)) in match type_of_rawexpr _ with _ => _ end _ _) ] => gen_do_eq_type_of_rawexpr_of_wf; break_innermost_match_step end | rewrite ERROR_BAD_REWRITE_RULE_id | wf_safe_t_step | eapply expr.wf_Proper_list; [ | eapply wf_expr_of_wf_rawexpr; eassumption ]; wf_t | eapply UnderLets.wf_splice; [ solve [ apply wf_do_again; wf_t ] | ] | apply wf_reify | progress destruct_head' (@AnyExpr.anyexpr) | rewrite app_assoc | progress fold (@reify var1) (@reify var2) (@reflect var1) (@reflect var2) ]. Qed. (* Fixpoint with_bindingsT (p : pattern) (T : Type) := match p return Type with | pattern.Wildcard t => ptype_interp qforall t (fun eT => eT -> T) | pattern.Ident idc => match arg_types idc with | Some t => t -> T | None => T end | pattern.App f x => with_bindingsT f (with_bindingsT x T) end. Fixpoint lift_pbase_type_interp_cps {K1 K2} {quant} (F : forall t : base.type, K1 t -> K2 t) {t} : pbase_type_interp_cps quant t K1 -> pbase_type_interp_cps quant t K2 := match t, quant return pbase_type_interp_cps quant t K1 -> pbase_type_interp_cps quant t K2 with | pattern.base.type.any, qforall => fun f t => F t (f t) | pattern.base.type.any, qexists => fun tf => existT _ _ (F _ (projT2 tf)) | pattern.base.type.type_base t, _ => F _ | pattern.base.type.prod A B, _ => @lift_pbase_type_interp_cps _ _ quant (fun A' => @lift_pbase_type_interp_cps _ _ quant (fun _ => F _) B) A | pattern.base.type.list A, _ => @lift_pbase_type_interp_cps _ _ quant (fun _ => F _) A end. Fixpoint lift_ptype_interp_cps {K1 K2} {quant} (F : forall t : type.type base.type, K1 t -> K2 t) {t} : ptype_interp_cps quant t K1 -> ptype_interp_cps quant t K2 := match t return ptype_interp_cps quant t K1 -> ptype_interp_cps quant t K2 with | type.base t => lift_pbase_type_interp_cps F | type.arrow A B => @lift_ptype_interp_cps _ _ quant (fun A' => @lift_ptype_interp_cps _ _ quant (fun _ => F _) B) A end. Fixpoint lift_with_bindings {p} {A B : Type} (F : A -> B) {struct p} : with_bindingsT p A -> with_bindingsT p B := match p return with_bindingsT p A -> with_bindingsT p B with | pattern.Wildcard t => lift_ptype_interp_cps (K1:=fun t => value t -> A) (K2:=fun t => value t -> B) (fun _ f v => F (f v)) | pattern.Ident idc => match arg_types idc as ty return match ty with | Some t => t -> A | None => A end -> match ty with | Some t => t -> B | None => B end with | Some _ => fun f v => F (f v) | None => F end | pattern.App f x => @lift_with_bindings f _ _ (@lift_with_bindings x _ _ F) end. Fixpoint app_pbase_type_interp_cps {T : Type} {K1 K2 : base.type -> Type} (F : forall t, K1 t -> K2 t -> T) {t} : pbase_type_interp_cps qforall t K1 -> pbase_type_interp_cps qexists t K2 -> T := match t return pbase_type_interp_cps qforall t K1 -> pbase_type_interp_cps qexists t K2 -> T with | pattern.base.type.any => fun f tv => F _ (f _) (projT2 tv) | pattern.base.type.type_base t => fun f v => F _ f v | pattern.base.type.prod A B => @app_pbase_type_interp_cps _ (fun A' => pbase_type_interp_cps qforall B (fun B' => K1 (A' * B')%etype)) (fun A' => pbase_type_interp_cps qexists B (fun B' => K2 (A' * B')%etype)) (fun A' => @app_pbase_type_interp_cps _ (fun B' => K1 (A' * B')%etype) (fun B' => K2 (A' * B')%etype) (fun _ => F _) B) A | pattern.base.type.list A => @app_pbase_type_interp_cps T (fun A' => K1 (base.type.list A')) (fun A' => K2 (base.type.list A')) (fun _ => F _) A end. Fixpoint app_ptype_interp_cps {T : Type} {K1 K2 : type -> Type} (F : forall t, K1 t -> K2 t -> T) {t} : ptype_interp_cps qforall t K1 -> ptype_interp_cps qexists t K2 -> T := match t return ptype_interp_cps qforall t K1 -> ptype_interp_cps qexists t K2 -> T with | type.base t => app_pbase_type_interp_cps F | type.arrow A B => @app_ptype_interp_cps _ (fun A' => ptype_interp_cps qforall B (fun B' => K1 (A' -> B')%etype)) (fun A' => ptype_interp_cps qexists B (fun B' => K2 (A' -> B')%etype)) (fun A' => @app_ptype_interp_cps _ (fun B' => K1 (A' -> B')%etype) (fun B' => K2 (A' -> B')%etype) (fun _ => F _) B) A end. Fixpoint app_binding_data {T p} : forall (f : with_bindingsT p T) (v : binding_dataT p), T := match p return forall (f : with_bindingsT p T) (v : binding_dataT p), T with | pattern.Wildcard t => app_ptype_interp_cps (K1:=fun t => value t -> T) (K2:=fun t => value t) (fun _ f v => f v) | pattern.Ident idc => match arg_types idc as ty return match ty with | Some t => t -> T | None => T end -> match ty return Type with | Some t => t | None => unit end -> T with | Some t => fun f x => f x | None => fun v 'tt => v end | pattern.App f x => fun F '(vf, vx) => @app_binding_data _ x (@app_binding_data _ f F vf) vx end. (** XXX MOVEME? *) Definition mkcast {P : type -> Type} {t1 t2 : type} : ~> (option (P t1 -> P t2)) := fun T k => type.try_make_transport_cps base.try_make_transport_cps P t1 t2 _ k. Definition cast {P : type -> Type} {t1 t2 : type} (v : P t1) : ~> (option (P t2)) := fun T k => type.try_transport_cps base.try_make_transport_cps P t1 t2 v _ k. Definition castb {P : base.type -> Type} {t1 t2 : base.type} (v : P t1) : ~> (option (P t2)) := fun T k => base.try_transport_cps P t1 t2 v _ k. Definition castbe {t1 t2 : base.type} (v : expr t1) : ~> (option (expr t2)) := @castb expr t1 t2 v. Definition castv {t1 t2} (v : value t1) : ~> (option (value t2)) := fun T k => type.try_transport_cps base.try_make_transport_cps value t1 t2 v _ k. *) Section with_do_again. Context (dtree : @decision_tree pident) (rew1 : rewrite_rulesT1) (rew2 : rewrite_rulesT2) (Hrew : rewrite_rules_goodT rew1 rew2) (do_again1 : forall t : base.type, @expr.expr base.type ident (@value var1) t -> @UnderLets var1 (@expr var1 t)) (do_again2 : forall t : base.type, @expr.expr base.type ident (@value var2) t -> @UnderLets var2 (@expr var2 t)) (wf_do_again : forall G (t : base.type) e1 e2, expr.wf nil e1 e2 -> UnderLets.wf (fun G' => expr.wf G') G (@do_again1 t e1) (@do_again2 t e2)). Local Notation assemble_identifier_rewriters' var := (@assemble_identifier_rewriters' ident var pident full_types invert_bind_args type_of_pident pident_to_typed of_typed_ident arg_types bind_args try_make_transport_ident_cps dtree). Local Notation assemble_identifier_rewriters var := (@assemble_identifier_rewriters ident var pident full_types invert_bind_args type_of_pident pident_to_typed eta_ident_cps of_typed_ident arg_types bind_args try_make_transport_ident_cps dtree). Lemma wf_assemble_identifier_rewriters' G t re1 e1 re2 e2 K1 K2 (He : @wf_rawexpr G t re1 e1 re2 e2) (HK1 : forall P v, K1 P v = rew [P] (proj1 (eq_type_of_rawexpr_of_wf He)) in v) (HK2 : forall P v, K2 P v = rew [P] (proj2 (eq_type_of_rawexpr_of_wf He)) in v) : wf_value_with_lets G (@assemble_identifier_rewriters' var1 rew1 do_again1 t re1 K1) (@assemble_identifier_rewriters' var2 rew2 do_again2 t re2 K2). Proof. revert dependent G; revert dependent re1; revert dependent re2; induction t as [t|s IHs d IHd]; intros; cbn [assemble_identifier_rewriters']. { rewrite HK1, HK2; apply wf_eval_rewrite_rules; assumption. } { hnf; intros; subst. unshelve eapply IHd; cbn [type_of_rawexpr]; [ shelve | shelve | constructor | cbn; reflexivity | cbn; reflexivity ]. all: rewrite ?HK1, ?HK2. { erewrite (proj1 (eq_expr_of_rawexpr_of_wf He)), (proj2 (eq_expr_of_rawexpr_of_wf He)). eapply wf_rawexpr_Proper_list; [ | eassumption ]; wf_t. } { cbv [rValueOrExpr2]; break_innermost_match; constructor; try apply wf_reify; (eapply wf_value'_Proper_list; [ | eassumption ]); wf_t. } } Qed. Lemma wf_assemble_identifier_rewriters G t (idc : ident t) : wf_value_with_lets G (@assemble_identifier_rewriters var1 rew1 do_again1 t idc) (@assemble_identifier_rewriters var2 rew2 do_again2 t idc). Proof. cbv [assemble_identifier_rewriters]; rewrite !eta_ident_cps_correct. unshelve eapply wf_assemble_identifier_rewriters'; [ shelve | shelve | constructor | | ]; reflexivity. Qed. End with_do_again. End with_var2. End with_type. Section full_with_var2. Context {var1 var2 : type.type base.type -> Type}. Local Notation expr := (@expr.expr base.type ident). Local Notation value := (@Compile.value base.type ident). Local Notation value_with_lets := (@Compile.value_with_lets base.type ident). Local Notation UnderLets := (UnderLets.UnderLets base.type ident). Local Notation reflect := (@Compile.reflect ident). Section with_rewrite_head. Context (rewrite_head1 : forall t (idc : ident t), @value_with_lets var1 t) (rewrite_head2 : forall t (idc : ident t), @value_with_lets var2 t) (wf_rewrite_head : forall G t (idc1 idc2 : ident t), idc1 = idc2 -> wf_value_with_lets G (rewrite_head1 t idc1) (rewrite_head2 t idc2)). Local Notation rewrite_bottomup1 := (@rewrite_bottomup var1 rewrite_head1). Local Notation rewrite_bottomup2 := (@rewrite_bottomup var2 rewrite_head2). Lemma wf_rewrite_bottomup G G' {t} e1 e2 (Hwf : expr.wf G e1 e2) (HG : forall t v1 v2, List.In (existT _ t (v1, v2)) G -> wf_value G' v1 v2) : wf_value_with_lets G' (@rewrite_bottomup1 t e1) (@rewrite_bottomup2 t e2). Proof. revert dependent G'; induction Hwf; intros; cbn [rewrite_bottomup]. all: repeat first [ reflexivity | solve [ eauto ] | apply wf_rewrite_head | apply wf_Base_value | apply wf_splice_value_with_lets | apply wf_splice_under_lets_with_value | apply wf_reify_and_let_binds_cps | apply UnderLets.wf_reify_and_let_binds_base_cps | apply wf_reflect | progress subst | progress destruct_head'_ex | progress cbv [wf_value_with_lets wf_value] in * | progress cbn [wf_value' fst snd] in * | progress intros | wf_safe_t_step | eapply wf_value'_Proper_list; [ | solve [ eauto ] ] | match goal with | [ |- UnderLets.wf _ _ _ _ ] => constructor | [ H : _ |- _ ] => apply H; clear H end ]. Qed. End with_rewrite_head. Local Notation nbe var := (@rewrite_bottomup var (fun t idc => reflect (expr.Ident idc))). Lemma wf_nbe G G' {t} e1 e2 (Hwf : expr.wf G e1 e2) (HG : forall t v1 v2, List.In (existT _ t (v1, v2)) G -> wf_value G' v1 v2) : wf_value_with_lets G' (@nbe var1 t e1) (@nbe var2 t e2). Proof. eapply wf_rewrite_bottomup; try eassumption. intros; subst; eapply wf_reflect; wf_t. Qed. Section with_rewrite_head2. Context (rewrite_head1 : forall (do_again : forall t : base.type, @expr (@value var1) (type.base t) -> @UnderLets var1 (@expr var1 (type.base t))) t (idc : ident t), @value_with_lets var1 t) (rewrite_head2 : forall (do_again : forall t : base.type, @expr (@value var2) (type.base t) -> @UnderLets var2 (@expr var2 (type.base t))) t (idc : ident t), @value_with_lets var2 t) (wf_rewrite_head : forall do_again1 do_again2 (wf_do_again : forall G' G (t : base.type) e1 e2 (HG : forall t v1 v2, List.In (existT _ t (v1, v2)) G -> wf_value G' v1 v2), expr.wf G e1 e2 -> UnderLets.wf (fun G' => expr.wf G') G' (do_again1 t e1) (do_again2 t e2)) G t (idc1 idc2 : ident t), idc1 = idc2 -> wf_value_with_lets G (rewrite_head1 do_again1 t idc1) (rewrite_head2 do_again2 t idc2)). Lemma wf_repeat_rewrite fuel : forall {t} G G' e1 e2 (Hwf : expr.wf G e1 e2) (HG : forall t v1 v2, List.In (existT _ t (v1, v2)) G -> wf_value G' v1 v2), wf_value_with_lets G' (@repeat_rewrite var1 rewrite_head1 fuel t e1) (@repeat_rewrite var2 rewrite_head2 fuel t e2). Proof. induction fuel as [|fuel IHfuel]; intros; cbn [repeat_rewrite]; eapply wf_rewrite_bottomup; try eassumption; apply wf_rewrite_head; intros; [ eapply wf_nbe with (t:=type.base _) | eapply IHfuel with (t:=type.base _) ]; eassumption. Qed. Lemma wf_rewrite fuel : forall {t} G G' e1 e2 (Hwf : expr.wf G e1 e2) (HG : forall t v1 v2, List.In (existT _ t (v1, v2)) G -> wf_value G' v1 v2), expr.wf G' (@rewrite var1 rewrite_head1 fuel t e1) (@rewrite var2 rewrite_head2 fuel t e2). Proof. intros; eapply wf_reify, wf_repeat_rewrite; eassumption. Qed. End with_rewrite_head2. End full_with_var2. Theorem Wf_Rewrite (rewrite_head : forall var (do_again : forall t : base.type, @expr (@value base.type ident var) (type.base t) -> @UnderLets.UnderLets base.type ident var (@expr var (type.base t))) t (idc : ident t), @value_with_lets base.type ident var t) (wf_rewrite_head : forall var1 var2 do_again1 do_again2 (wf_do_again : forall (t : base.type) e1 e2, expr.wf nil e1 e2 -> UnderLets.wf (fun G' => expr.wf G') nil (do_again1 t e1) (do_again2 t e2)) t (idc : ident t), wf_value_with_lets nil (rewrite_head var1 do_again1 t idc) (rewrite_head var2 do_again2 t idc)) fuel {t} (e : Expr t) (Hwf : Wf e) : Wf (@Rewrite rewrite_head fuel t e). Proof. intros var1 var2; cbv [Rewrite]; eapply wf_rewrite with (G:=nil); [ | apply Hwf | wf_t ]. intros; subst; eapply wf_value'_Proper_list; [ | eapply wf_rewrite_head ]; wf_t. eapply wf_do_again; [ | eassumption ]; wf_t. Qed. End Compile. Lemma nbe_rewrite_head_eq : @nbe_rewrite_head = @nbe_rewrite_head0. Proof. reflexivity. Qed. Lemma fancy_rewrite_head_eq invert_low invert_high : (fun var do_again => @fancy_rewrite_head invert_low invert_high var) = (fun var => @fancy_rewrite_head0 var invert_low invert_high). Proof. reflexivity. Qed. Lemma arith_rewrite_head_eq max_const_val : @arith_rewrite_head max_const_val = (fun var => @arith_rewrite_head0 var max_const_val). Proof. reflexivity. Qed. Lemma nbe_all_rewrite_rules_eq : @nbe_all_rewrite_rules = @nbe_rewrite_rules. Proof. reflexivity. Qed. Lemma fancy_all_rewrite_rules_eq : @fancy_all_rewrite_rules = @fancy_rewrite_rules. Proof. reflexivity. Qed. Lemma arith_all_rewrite_rules_eq : @arith_all_rewrite_rules = @arith_rewrite_rules. Proof. reflexivity. Qed. Section good. Context {var1 var2 : type -> Type}. Local Notation rewrite_rules_goodT := (@Compile.rewrite_rules_goodT ident pattern.ident pattern.ident.arg_types var1 var2). Lemma rlist_rect_cps_id {var} A P {ivar} N_case C_case ls T k : @rlist_rect var A P ivar N_case C_case ls T k = k (@rlist_rect var A P ivar N_case C_case ls _ id). Proof. cbv [rlist_rect id Compile.option_bind']; rewrite !expr.reflect_list_cps_id. destruct (invert_expr.reflect_list ls) eqn:?; cbn [Option.bind Option.sequence_return]; reflexivity. Qed. Lemma rlist_rect_cast_cps_id {var} A A' P {ivar} N_case C_case ls T k : @rlist_rect_cast var A A' P ivar N_case C_case ls T k = k (@rlist_rect_cast var A A' P ivar N_case C_case ls _ id). Proof. cbv [rlist_rect_cast Compile.castbe Compile.castb id Compile.option_bind']; rewrite_type_transport_correct; break_innermost_match; type_beq_to_eq; subst; cbn [eq_rect Option.bind Option.sequence_return]; [ | reflexivity ]. apply rlist_rect_cps_id. Qed. Local Ltac start_cps_id := lazymatch goal with | [ |- In _ ?rewr -> _ ] => let h := head rewr in cbv [h] end; cbn [In combine]; intros; destruct_head'_or; inversion_sigma; subst; try reflexivity; destruct_head' False. Local Ltac cps_id_step := first [ reflexivity | progress destruct_head' False | progress subst | progress inversion_option | progress cbv [id Compile.binding_dataT pattern.ident.arg_types Compile.ptype_interp Compile.ptype_interp_cps Compile.pbase_type_interp_cps Compile.value Compile.value' Compile.app_binding_data Compile.app_ptype_interp_cps Compile.app_pbase_type_interp_cps Compile.lift_with_bindings Compile.lift_ptype_interp_cps Compile.lift_pbase_type_interp_cps cpsbind cpscall cpsreturn cps_option_bind type_base rwhen] in * | progress cbn [UnderLets.splice eq_rect projT1 projT2 Option.bind Option.sequence Option.sequence_return] in * | progress type_beq_to_eq | progress rewrite_type_transport_correct | progress cbv [Compile.option_bind' Compile.castbe Compile.castb Compile.castv] in * | progress break_innermost_match | progress destruct_head'_sigT | rewrite !expr.reflect_list_cps_id | match goal with | [ |- context[@rlist_rect_cast ?var ?A ?A' ?P ?ivar ?N_case ?C_case ?ls ?T ?k] ] => (tryif (let __ := constr:(eq_refl : k = (fun x => x)) in idtac) then fail else rewrite (@rlist_rect_cast_cps_id var A A' P ivar N_case C_case ls T k)) | [ |- context[@rlist_rect ?var ?A ?P ?ivar ?N_case ?C_case ?ls ?T ?k] ] => (tryif (let __ := constr:(eq_refl : k = (fun x => x)) in idtac) then fail else rewrite (@rlist_rect_cps_id var A P ivar N_case C_case ls T k)) end | progress cbv [Option.bind] in * | break_match_step ltac:(fun _ => idtac) ]. Local Ltac cps_id_t := start_cps_id; repeat cps_id_step. Lemma nbe_cps_id {var} p r : In (existT _ p r) (@nbe_rewrite_rules var) -> forall v T k, r v T k = k (r v _ id). Proof. cps_id_t. Qed. Lemma arith_cps_id max_const {var} p r : In (existT _ p r) (@arith_rewrite_rules var max_const) -> forall v T k, r v T k = k (r v _ id). Proof. cps_id_t. Qed. Lemma fancy_cps_id invert_low invert_high {var} p r : In (existT _ p r) (@fancy_rewrite_rules var invert_low invert_high) -> forall v T k, r v T k = k (r v _ id). Proof. cps_id_t. Qed. Local Ltac start_good cps_id rewrite_rules := split; [ reflexivity | ]; repeat apply conj; try solve [ eapply cps_id ]; []; cbv [rewrite_rules]; cbn [In combine]; intros; destruct_head'_or; inversion_prod; inversion_sigma; subst; destruct_head' False; (split; [ reflexivity | ]). Local Ltac good_t_step := first [ progress subst | progress cbv [id Compile.binding_dataT pattern.ident.arg_types Compile.ptype_interp Compile.ptype_interp_cps Compile.pbase_type_interp_cps Compile.value Compile.value' Compile.app_binding_data Compile.app_ptype_interp_cps Compile.app_pbase_type_interp_cps Compile.lift_with_bindings Compile.lift_ptype_interp_cps Compile.lift_pbase_type_interp_cps cpsbind cpscall cpsreturn cps_option_bind type_base Compile.wf_binding_dataT Compile.wf_ptype_interp_id Compile.wf_ptype_interp_cps Compile.wf_pbase_type_interp_cps ident.smart_Literal rwhen AnyExpr.unwrap] in * | progress destruct_head'_sig | progress cbn [eq_rect option_eq projT1 projT2 fst snd base.interp In combine Option.bind Option.sequence Option.sequence_return UnderLets.splice] in * | progress destruct_head'_prod | progress destruct_head'_sigT | progress intros | progress eliminate_hprop_eq | progress cbv [Compile.option_bind' Compile.castbe Compile.castb Compile.castv] in * | progress type_beq_to_eq | progress rewrite_type_transport_correct | break_innermost_match_step | wf_safe_t_step | rewrite !expr.reflect_list_cps_id | congruence | match goal with | [ |- expr.wf _ (reify_list _) (reify_list _) ] => rewrite expr.wf_reify_list | [ |- context[length ?ls] ] => tryif is_var ls then fail else (progress autorewrite with distr_length) | [ |- ex _ ] => eexists | [ |- UnderLets.wf _ _ _ _ ] => constructor | [ |- UnderLets.wf _ _ (UnderLets.splice _ _) (UnderLets.splice _ _) ] => eapply UnderLets.wf_splice | [ |- Compile.wf_anyexpr _ _ _ _ ] => constructor | [ H : Compile.wf_value ?G ?e1 ?e2 |- UnderLets.wf _ ?G (?e1 _) (?e2 _) ] => eapply (H nil) | [ H : Compile.wf_value ?G ?e1 ?e2 |- UnderLets.wf _ ?G (?e1 _ _) (?e2 _ _) ] => eapply UnderLets.wf_Proper_list; [ | | eapply H; [ reflexivity | | reflexivity | ] ]; revgoals | [ |- context[@rlist_rect_cast ?var ?A ?A' ?P ?ivar ?N_case ?C_case ?ls ?T ?k] ] => (tryif (let __ := constr:(eq_refl : k = (fun x => x)) in idtac) then fail else rewrite (@rlist_rect_cast_cps_id var A A' P ivar N_case C_case ls T k)) | [ |- context[@rlist_rect ?var ?A ?P ?ivar ?N_case ?C_case ?ls ?T ?k] ] => (tryif (let __ := constr:(eq_refl : k = (fun x => x)) in idtac) then fail else rewrite (@rlist_rect_cps_id var A P ivar N_case C_case ls T k)) | [ |- ?x = ?x /\ _ ] => split; [ reflexivity | ] end | solve [ wf_t ] (*| progress cbv [Option.bind] | break_match_step ltac:(fun _ => idtac)*) ]. Lemma nbe_rewrite_rules_good : rewrite_rules_goodT nbe_rewrite_rules nbe_rewrite_rules. Proof. start_good (@nbe_cps_id) (@nbe_rewrite_rules). all: repeat good_t_step. Admitted. Lemma arith_rewrite_rules_good max_const : rewrite_rules_goodT (arith_rewrite_rules max_const) (arith_rewrite_rules max_const). Proof. start_good (@arith_cps_id) (@arith_rewrite_rules). all: repeat good_t_step. Admitted. Lemma fancy_rewrite_rules_good (invert_low invert_high : Z -> Z -> option Z) (Hlow : forall s v v', invert_low s v = Some v' -> v = Z.land v' (2^(s/2)-1)) (Hhigh : forall s v v', invert_high s v = Some v' -> v = Z.shiftr v' (s/2)) : rewrite_rules_goodT (fancy_rewrite_rules invert_low invert_high) (fancy_rewrite_rules invert_low invert_high). Proof. start_good (@fancy_cps_id) (@fancy_rewrite_rules). all: repeat good_t_step. all: cbv [Option.bind]. all: repeat good_t_step. Qed. End good. Local Ltac start_Wf_or_interp_proof rewrite_head_eq all_rewrite_rules_eq rewrite_head0 := let Rewrite := lazymatch goal with | [ |- Wf ?e ] => head e | [ |- Interp ?e == _ ] => head e end in cbv [Rewrite]; rewrite rewrite_head_eq; cbv [rewrite_head0]; rewrite all_rewrite_rules_eq. Local Ltac start_Wf_proof rewrite_head_eq all_rewrite_rules_eq rewrite_head0 := start_Wf_or_interp_proof rewrite_head_eq all_rewrite_rules_eq rewrite_head0; apply Compile.Wf_Rewrite; [ | assumption ]; let wf_do_again := fresh "wf_do_again" in (intros ? ? ? ? wf_do_again ? ?); eapply @Compile.wf_assemble_identifier_rewriters; eauto using pattern.ident.to_typed_invert_bind_args, pattern.ident.ident_beq, pattern.ident.internal_ident_dec_bl, pattern.ident.try_make_transport_ident_cps_correct, pattern.ident.eta_ident_cps_correct with nocore; [ .. | intros; eapply UnderLets.wf_Proper_list; [ | | eapply wf_do_again; assumption ]; solve [ wf_t ] ]. Local Ltac start_Interp_proof rewrite_head_eq all_rewrite_rules_eq rewrite_head0 := start_Wf_or_interp_proof rewrite_head_eq all_rewrite_rules_eq rewrite_head0. Lemma Wf_RewriteNBE {t} e (Hwf : Wf e) : Wf (@RewriteNBE t e). Proof. start_Wf_proof nbe_rewrite_head_eq nbe_all_rewrite_rules_eq (@nbe_rewrite_head0). apply nbe_rewrite_rules_good. Qed. Lemma Wf_RewriteArith (max_const_val : Z) {t} e (Hwf : Wf e) : Wf (@RewriteArith max_const_val t e). Proof. start_Wf_proof arith_rewrite_head_eq arith_all_rewrite_rules_eq (@arith_rewrite_head0). apply arith_rewrite_rules_good. Qed. Lemma Wf_RewriteToFancy (invert_low invert_high : Z -> Z -> option Z) (Hlow : forall s v v', invert_low s v = Some v' -> v = Z.land v' (2^(s/2)-1)) (Hhigh : forall s v v', invert_high s v = Some v' -> v = Z.shiftr v' (s/2)) {t} e (Hwf : Wf e) : Wf (@RewriteToFancy invert_low invert_high t e). Proof. start_Wf_proof fancy_rewrite_head_eq fancy_all_rewrite_rules_eq (@fancy_rewrite_head0). apply fancy_rewrite_rules_good; assumption. Qed. Lemma Interp_RewriteNBE {t} e (Hwf : Wf e) : Interp (@RewriteNBE t e) == Interp e. Proof. start_Interp_proof nbe_rewrite_head_eq nbe_all_rewrite_rules_eq (@nbe_rewrite_head0). Admitted. Lemma Interp_RewriteArith (max_const_val : Z) {t} e (Hwf : Wf e) : Interp (@RewriteArith max_const_val t e) == Interp e. Proof. start_Interp_proof arith_rewrite_head_eq arith_all_rewrite_rules_eq (@arith_rewrite_head0). Admitted. Lemma Interp_RewriteToFancy (invert_low invert_high : Z -> Z -> option Z) (Hlow : forall s v v', invert_low s v = Some v' -> v = Z.land v' (2^(s/2)-1)) (Hhigh : forall s v v', invert_high s v = Some v' -> v = Z.shiftr v' (s/2)) {t} e (Hwf : Wf e) : Interp (@RewriteToFancy invert_low invert_high t e) == Interp e. Proof. start_Interp_proof fancy_rewrite_head_eq fancy_all_rewrite_rules_eq (@fancy_rewrite_head0). Admitted. End RewriteRules. Lemma Wf_PartialEvaluate {t} e (Hwf : Wf e) : Wf (@PartialEvaluate t e). Proof. apply Wf_RewriteNBE, Hwf. Qed. Lemma Interp_PartialEvaluate {t} e (Hwf : Wf e) : Interp (@PartialEvaluate t e) == Interp e. Proof. apply Interp_RewriteNBE, Hwf. Qed. Hint Resolve Wf_PartialEvaluate Wf_RewriteArith Wf_RewriteNBE Wf_RewriteToFancy : wf. Hint Rewrite @Interp_PartialEvaluate @Interp_RewriteArith @Interp_RewriteNBE @Interp_RewriteToFancy : interp. End Compilers.