Require Import Coq.ZArith.ZArith Coq.ZArith.Znumtheory. Require Import Coq.Numbers.Natural.Peano.NPeano. Require Import Crypto.CompleteEdwardsCurve.CompleteEdwardsCurveTheorems. Require Import Crypto.ModularArithmetic.PrimeFieldTheorems Crypto.ModularArithmetic.ModularArithmeticTheorems. Require Import Bedrock.Word. Require Import Crypto.Tactics.VerdiTactics. Require Import Crypto.Spec.Encoding. Require Import Crypto.Util.ZUtil. Require Import Crypto.Spec.ModularWordEncoding. Local Open Scope F_scope. Section SignBit. Context {m : Z} {prime_m : prime m} {two_lt_m : (2 < m)%Z} {sz : nat} {bound_check : (Z.to_nat m < 2 ^ sz)%nat}. Lemma sign_bit_parity : forall x, @sign_bit m sz x = Z.odd x. Proof. unfold sign_bit, Fm_enc; intros. pose proof (shatter_word (NToWord sz (Z.to_N x))) as shatter. case_eq sz; intros; subst; rewrite shatter. + pose proof (prime_ge_2 m prime_m). simpl in bound_check. assert (m < 1)%Z by (apply Z2Nat.inj_lt; try omega; assumption). omega. + assert (0 < m)%Z as m_pos by (pose proof prime_ge_2 m prime_m; omega). pose proof (FieldToZ_range x m_pos). destruct (FieldToZ x); auto. - destruct p; auto. - pose proof (Pos2Z.neg_is_neg p); omega. Qed. Lemma sign_bit_zero : @sign_bit m sz 0 = false. Proof. rewrite sign_bit_parity; auto. Qed. Lemma sign_bit_opp : forall (x : F m), x <> 0 -> negb (@sign_bit m sz x) = @sign_bit m sz (opp x). Proof. intros. pose proof sign_bit_zero as sign_zero. rewrite !sign_bit_parity in *. pose proof (F_opp_spec x) as opp_spec_x. apply F_eq in opp_spec_x. rewrite FieldToZ_add in opp_spec_x. rewrite <-opp_spec_x, Z.odd_mod in sign_zero by (pose proof prime_ge_2 m prime_m; omega). replace (Z.odd m) with true in sign_zero by (destruct (Z.prime_odd_or_2 m prime_m); auto || omega). rewrite Z.odd_add, F_FieldToZ_add_opp, Z.div_same, Bool.xorb_true_r in sign_zero by assumption || omega. apply Bool.xorb_eq. rewrite <-Bool.negb_xorb_l. assumption. Qed. End SignBit.