(* Following http://adam.chlipala.net/theses/andreser.pdf chapter 3 *) Require Import Coq.ZArith.ZArith Coq.micromega.Lia Crypto.Algebra.Nsatz. Require Import Crypto.Util.Tactics.UniquePose Crypto.Util.Decidable. Require Import Crypto.Util.Tuple Crypto.Util.Prod Crypto.Util.LetIn. Require Import Crypto.Util.ListUtil Coq.Lists.List Crypto.Util.NatUtil. Require Import QArith.QArith_base QArith.Qround Crypto.Util.QUtil. Require Import Crypto.Algebra.Ring Crypto.Util.Decidable.Bool2Prop. Import ListNotations. Local Open Scope Z_scope. Definition runtime_mul := Z.mul. Definition runtime_add := Z.add. Delimit Scope runtime_scope with RT. Infix "*" := runtime_mul : runtime_scope. Infix "+" := runtime_add : runtime_scope. Module Associational. Definition eval (p:list (Z*Z)) : Z := fold_right Z.add 0%Z (map (fun t => fst t * snd t) p). Lemma eval_nil : eval nil = 0. Proof. trivial. Qed. Lemma eval_cons p q : eval (p::q) = fst p * snd p + eval q. Proof. trivial. Qed. Lemma eval_app p q: eval (p++q) = eval p + eval q. Proof. induction p; rewrite <-?List.app_comm_cons; rewrite ?eval_nil, ?eval_cons; nsatz. Qed. Hint Rewrite eval_nil eval_cons eval_app : push_eval. Local Ltac push := autorewrite with push_eval push_map push_partition push_flat_map push_fold_right push_nth_default cancel_pair. Lemma eval_map_mul (a x:Z) (p:list (Z*Z)) : eval (List.map (fun t => (a*fst t, x*snd t)) p) = a*x*eval p. Proof. induction p; push; nsatz. Qed. Hint Rewrite eval_map_mul : push_eval. Definition mul (p q:list (Z*Z)) : list (Z*Z) := flat_map (fun t => map (fun t' => (fst t * fst t', (snd t * snd t')%RT)) q) p. Lemma eval_mul p q : eval (mul p q) = eval p * eval q. Proof. induction p; cbv [mul]; push; nsatz. Qed. Hint Rewrite eval_mul : push_eval. Example base10_2digit_mul (a0:Z) (a1:Z) (b0:Z) (b1:Z) : {ab| eval ab = eval [(10,a1);(1,a0)] * eval [(10,b1);(1,b0)]}. eexists ?[ab]. (* Goal: eval ?ab = eval [(10,a1);(1,a0)] * eval [(10,b1);(1,b0)] *) rewrite <-eval_mul. (* Goal: eval ?ab = eval (mul [(10,a1);(1,a0)] [(10,b1);(1,b0)]) *) cbv -[runtime_mul eval]. (* Goal: eval ?ab = eval [(100,(a1*b1));(10,a1*b0);(10,a0*b1);(1,a0*b0)]%RT *) trivial. Defined. Definition split (s:Z) (p:list (Z*Z)) : list (Z*Z) * list (Z*Z) := let hi_lo := partition (fun t => fst t mod s =? 0) p in (snd hi_lo, map (fun t => (fst t / s, snd t)) (fst hi_lo)). Lemma eval_split s p (s_nz:s<>0) : eval (fst (split s p)) + s * eval (snd (split s p)) = eval p. Proof. cbv [split]; induction p; repeat match goal with | |- context[?a/?b] => unique pose proof (Z_div_exact_full_2 a b ltac:(trivial) ltac:(trivial)) | _ => progress push | _ => progress break_match | _ => progress nsatz end. Qed. Lemma reduction_rule a b s c (modulus_nz:s-c<>0) : (a + s * b) mod (s - c) = (a + c * b) mod (s - c). Proof. replace (a + s * b) with ((a + c*b) + b*(s-c)) by nsatz. rewrite Z.add_mod,Z_mod_mult,Z.add_0_r,Z.mod_mod;trivial. Qed. Definition reduce (s:Z) (c:list _) (p:list _) : list (Z*Z) := let lo_hi := split s p in fst lo_hi ++ mul c (snd lo_hi). Lemma eval_reduce s c p (s_nz:s<>0) (modulus_nz:s-eval c<>0) : eval (reduce s c p) mod (s - eval c) = eval p mod (s - eval c). Proof. cbv [reduce]; push. rewrite <-reduction_rule, eval_split; trivial. Qed. Hint Rewrite eval_reduce : push_eval. End Associational. Module Positional. Section Positional. Context (weight : nat -> Z) (weight_0 : weight 0%nat = 1) (weight_nz : forall i, weight i <> 0). Definition to_associational {n:nat} (xs:tuple Z n) : list (Z*Z) := combine (map weight (List.seq 0 n)) (Tuple.to_list n xs). Definition eval {n} x := Associational.eval (@to_associational n x). Lemma eval_to_associational {n} x : Associational.eval (@to_associational n x) = eval x. Proof. trivial. Qed. (* SKIP over this: zeros, add_to_nth *) Local Ltac push := autorewrite with push_eval push_map distr_length push_flat_map push_fold_right push_nth_default cancel_pair natsimplify. Program Definition zeros n : tuple Z n := Tuple.from_list n (List.map (fun _ => 0) (List.seq 0 n)) _. Next Obligation. push; reflexivity. Qed. Lemma eval_zeros n : eval (zeros n) = 0. Proof. cbv [eval Associational.eval to_associational zeros]; rewrite Tuple.to_list_from_list. generalize dependent (List.seq 0 n); intro xs. induction xs; simpl; nsatz. Qed. Program Definition add_to_nth {n} i x : tuple Z n -> tuple Z n := Tuple.on_tuple (ListUtil.update_nth i (runtime_add x)) _. Next Obligation. apply ListUtil.length_update_nth. Defined. Lemma eval_add_to_nth {n} (i:nat) (H:(i progress push | _ => progress break_match | _ => progress (apply Zminus_eq; ring_simplify) | _ => rewrite <-ListUtil.map_nth_default_always end; lia. Qed. Hint Rewrite @eval_add_to_nth eval_zeros : push_eval. Fixpoint place (t:Z*Z) (i:nat) : nat * Z := if dec (fst t mod weight i = 0) then (i, let c := fst t / weight i in (c * snd t)%RT) else match i with S i' => place t i' | O => (O, fst t * snd t)%RT end. Lemma place_in_range (t:Z*Z) (n:nat) : (fst (place t n) < S n)%nat. Proof. induction n; cbv [place] in *; break_match; autorewrite with cancel_pair; try omega. Qed. Lemma weight_place t i : weight (fst (place t i)) * snd (place t i) = fst t * snd t. Proof. induction i; cbv [place] in *; break_match; push; repeat match goal with |- context[?a/?b] => unique pose proof (Z_div_exact_full_2 a b ltac:(auto) ltac:(auto)) end; nsatz. Qed. Hint Rewrite weight_place : push_eval. Definition from_associational n (p:list (Z*Z)) := List.fold_right (fun t => let p := place t (pred n) in add_to_nth (fst p) (snd p) ) (zeros n) p. Lemma eval_from_associational {n} p (n_nz:n<>O) : eval (from_associational n p) = Associational.eval p. Proof. induction p; cbv [from_associational] in *; push; try pose proof place_in_range a (pred n); try omega; try nsatz. Qed. Hint Rewrite @eval_from_associational : push_eval. Section mulmod. Context (m:Z) (m_nz:m <> 0) (s:Z) (s_nz:s <> 0) (c:list (Z*Z)) (Hm:m = s - Associational.eval c). Definition mulmod {n} (a b:tuple Z n) : tuple Z n := let a_a := to_associational a in let b_a := to_associational b in let ab_a := Associational.mul a_a b_a in let abm_a := Associational.reduce s c ab_a in from_associational n abm_a. Lemma eval_mulmod {n} (H:(n<>0)%nat) (f g:tuple Z n) : eval (mulmod f g) mod m = (eval f * eval g) mod m. Proof. cbv [mulmod]; rewrite Hm in *; push; trivial. Qed. End mulmod. End Positional. End Positional. Import Associational Positional. Local Coercion Z.of_nat : nat >-> Z. Local Coercion QArith_base.inject_Z : Z >-> Q. Definition w (i:nat) : Z := 2^Qceiling((25+1/2)*i). Example base_25_5_mul (f g:tuple Z 10) : { fg : tuple Z 10 | (eval w fg) mod (2^255-19) = (eval w f * eval w g) mod (2^255-19) }. (* manually assign names to limbs for pretty-printing *) destruct f as [[[[[[[[[f9 f8]f7]f6]f5]f4]f3]f2]f1]f0]. destruct g as [[[[[[[[[g9 g8]g7]g6]g5]g4]g3]g2]g1]g0]. eexists ?[fg]. erewrite <-eval_mulmod with (s:=2^255) (c:=[(1,19)]) by (try eapply pow_ceil_mul_nat_nonzero; vm_decide). (* eval w ?fg mod (2 ^ 255 - 19) = *) (* eval w *) (* (mulmod w (2^255) [(1, 19)] (f9,f8,f7,f6,f5,f4,f3,f2,f1,f0) *) (* (g9,g8,g7,g6,g5,g4,g3,g2,g1,g0)) mod (2^255 - 19) *) eapply f_equal2; [|trivial]. eapply f_equal. (* ?fg = *) (* mulmod w (2 ^ 255) [(1, 19)] (f9, f8, f7, f6, f5, f4, f3, f2, f1, f0) *) (* (g9, g8, g7, g6, g5, g4, g3, g2, g1, g0) *) cbv -[runtime_mul runtime_add]; cbv [runtime_mul runtime_add]. ring_simplify_subterms. (* ?fg = (f0*g9+ f1*g8+ f2*g7+ f3*g6+ f4*g5+ f5*g4+ f6*g3+ f7*g2+ f8*g1+ f9*g0, f0*g8+ 2*f1*g7+ f2*g6+ 2*f3*g5+ f4*g4+ 2*f5*g3+ f6*g2+ 2*f7*g1+ f8*g0+ 38*f9*g9, f0*g7+ f1*g6+ f2*g5+ f3*g4+ f4*g3+ f5*g2+ f6*g1+ f7*g0+ 19*f8*g9+ 19*f9*g8, f0*g6+ 2*f1*g5+ f2*g4+ 2*f3*g3+ f4*g2+ 2*f5*g1+ f6*g0+ 38*f7*g9+ 19*f8*g8+ 38*f9*g7, f0*g5+ f1*g4+ f2*g3+ f3*g2+ f4*g1+ f5*g0+ 19*f6*g9+ 19*f7*g8+ 19*f8*g7+ 19*f9*g6, f0*g4+ 2*f1*g3+ f2*g2+ 2*f3*g1+ f4*g0+ 38*f5*g9+ 19*f6*g8+ 38*f7*g7+ 19*f8*g6+ 38*f9*g5, f0*g3+ f1*g2+ f2*g1+ f3*g0+ 19*f4*g9+ 19*f5*g8+ 19*f6*g7+ 19*f7*g6+ 19*f8*g5+ 19*f9*g4, f0*g2+ 2*f1*g1+ f2*g0+ 38*f3*g9+ 19*f4*g8+ 38*f5*g7+ 19*f6*g6+ 38*f7*g5+ 19*f8*g4+ 38*f9*g3, f0*g1+ f1*g0+ 19*f2*g9+ 19*f3*g8+ 19*f4*g7+ 19*f5*g6+ 19*f6*g5+ 19*f7*g4+ 19*f8*g3+ 19*f9*g2, f0*g0+ 38*f1*g9+ 19*f2*g8+ 38*f3*g7+ 19*f4*g6+ 38*f5*g5+ 19*f6*g4+ 38*f7*g3+ 19*f8*g2+ 38*f9*g1) *) trivial. Defined. (* Eval cbv on this one would produce an ugly term due to the use of [destruct] *)