Require Import Coq.Classes.Morphisms. Require Coq.Setoids.Setoid. Require Import Crypto.Algebra Crypto.Tactics.Nsatz. Generalizable All Variables. Section Pre. Context {F eq zero one opp add sub mul inv div} `{field F eq zero one opp add sub mul inv div}. Local Infix "=" := eq. Local Notation "a <> b" := (not (a = b)). Local Infix "=" := eq : type_scope. Local Notation "a <> b" := (not (a = b)) : type_scope. Local Notation "0" := zero. Local Notation "1" := one. Local Infix "+" := add. Local Infix "*" := mul. Local Infix "-" := sub. Local Infix "/" := div. Local Notation "x '^' 2" := (x*x) (at level 30). Add Field EdwardsCurveField : (Field.field_theory_for_stdlib_tactic (T:=F)). Context {a:F} {a_nonzero : a<>0} {a_square : exists sqrt_a, sqrt_a^2 = a}. Context {d:F} {d_nonsquare : forall sqrt_d, sqrt_d^2 <> d}. Context {char_gt_2 : 1+1 <> 0}. (* the canonical definitions are in Spec *) Definition onCurve (P:F*F) := let (x, y) := P in a*x^2 + y^2 = 1 + d*x^2*y^2. Definition unifiedAdd' (P1' P2':F*F) : F*F := let (x1, y1) := P1' in let (x2, y2) := P2' in pair (((x1*y2 + y1*x2)/(1 + d*x1*x2*y1*y2))) (((y1*y2 - a*x1*x2)/(1 - d*x1*x2*y1*y2))). Ltac use_sqrt_a := destruct a_square as [sqrt_a a_square']; rewrite <-a_square' in *. Lemma edwardsAddComplete' x1 y1 x2 y2 : onCurve (pair x1 y1) -> onCurve (pair x2 y2) -> (d*x1*x2*y1*y2)^2 <> 1. Proof. unfold onCurve, not; use_sqrt_a; intros. destruct (eq_dec (sqrt_a*x2 + y2) 0); destruct (eq_dec (sqrt_a*x2 - y2) 0); lazymatch goal with | [H: not (eq (?f (sqrt_a * x2) y2) 0) |- _ ] => apply d_nonsquare with (sqrt_d:= (f (sqrt_a * x1) (d * x1 * x2 * y1 * y2 * y1)) /(f (sqrt_a * x2) y2 * x1 * y1 )) | _ => apply a_nonzero end; field_algebra; auto using Ring.opp_nonzero_nonzero; intro; nsatz_contradict. Qed. Lemma edwardsAddCompletePlus x1 y1 x2 y2 : onCurve (x1, y1) -> onCurve (x2, y2) -> (1 + d*x1*x2*y1*y2) <> 0. Proof. intros H1 H2 ?. apply (edwardsAddComplete' _ _ _ _ H1 H2); field_algebra. Qed. Lemma edwardsAddCompleteMinus x1 y1 x2 y2 : onCurve (x1, y1) -> onCurve (x2, y2) -> (1 - d*x1*x2*y1*y2) <> 0. Proof. intros H1 H2 ?. apply (edwardsAddComplete' _ _ _ _ H1 H2); field_algebra. Qed. Lemma zeroOnCurve : onCurve (0, 1). Proof. simpl. field_algebra. Qed. Lemma unifiedAdd'_onCurve : forall P1 P2, onCurve P1 -> onCurve P2 -> onCurve (unifiedAdd' P1 P2). Proof. unfold onCurve, unifiedAdd'; intros [x1 y1] [x2 y2] H1 H2. field_algebra; auto using edwardsAddCompleteMinus, edwardsAddCompletePlus. Qed. End Pre. Import Group Ring Field. (* TODO: move -- this does not need to be defined before [point] *) Section RespectsFieldHomomorphism. Context {F EQ ZERO ONE OPP ADD MUL SUB INV DIV} `{@field F EQ ZERO ONE OPP ADD SUB MUL INV DIV}. Context {K eq zero one opp add mul sub inv div} `{@field K eq zero one opp add sub mul inv div}. Local Infix "=" := eq. Local Infix "=" := eq : type_scope. Context {phi:F->K} `{@is_homomorphism F EQ ONE ADD MUL K eq one add mul phi}. Context {A D:F} {a d:K} {a_ok:phi A=a} {d_ok:phi D=d}. Let phip := fun (P':F*F) => let (x, y) := P' in (phi x, phi y). Let eqp := fun (P1' P2':K*K) => let (x1, y1) := P1' in let (x2, y2) := P2' in and (eq x1 x2) (eq y1 y2). Create HintDb field_homomorphism discriminated. Hint Rewrite homomorphism_one homomorphism_add homomorphism_sub homomorphism_mul homomorphism_div a_ok d_ok : field_homomorphism. Lemma morphism_unidiedAdd' : forall P Q:F*F, eqp (phip (unifiedAdd'(F:=F)(one:=ONE)(add:=ADD)(sub:=SUB)(mul:=MUL)(div:=DIV)(a:=A)(d:=D) P Q)) (unifiedAdd'(F:=K)(one:=one)(add:=add)(sub:=sub)(mul:=mul)(div:=div)(a:=a)(d:=d) (phip P) (phip Q)). Proof. intros [x1 y1] [x2 y2]. cbv [unifiedAdd' phip eqp]; apply conj; (rewrite_strat topdown hints field_homomorphism); reflexivity. Qed. End RespectsFieldHomomorphism.