Require Import Crypto.Compilers.Syntax. Require Import Crypto.Compilers.Wf. Require Import Crypto.Compilers.WfInversion. Require Import Crypto.Compilers.SmartMap. Require Import Crypto.Compilers.ExprInversion. Require Import Crypto.Util.Sigma Crypto.Util.Prod. Require Import Crypto.Util.Tactics.DestructHead. Require Import Crypto.Util.Tactics.RewriteHyp. Require Import Crypto.Util.Tactics.SpecializeBy. Require Import Crypto.Util.Tactics.SplitInContext. Local Open Scope ctype_scope. Section language. Context {base_type_code : Type} {op : flat_type base_type_code -> flat_type base_type_code -> Type}. Local Notation flat_type := (flat_type base_type_code). Local Notation type := (type base_type_code). Local Notation exprf := (@exprf base_type_code op). Local Notation expr := (@expr base_type_code op). Local Notation Expr := (@Expr base_type_code op). Local Notation wff := (@wff base_type_code op). Section with_var. Context {var1 var2 : base_type_code -> Type}. Local Hint Constructors Wf.wff. Lemma wff_app' {g G0 G1 t e1 e2} (wf : @wff var1 var2 (G0 ++ G1) t e1 e2) : wff (G0 ++ g ++ G1) e1 e2. Proof using Type. rewrite !List.app_assoc. revert wf; remember (G0 ++ G1)%list as G eqn:?; intro wf. revert dependent G0. revert dependent G1. induction wf; simpl in *; constructor; simpl; eauto. { subst; rewrite !List.in_app_iff in *; intuition. } { intros; subst. rewrite !List.app_assoc; eauto using List.app_assoc. } Qed. Lemma wff_app_pre {g G t e1 e2} (wf : @wff var1 var2 G t e1 e2) : wff (g ++ G) e1 e2. Proof using Type. apply (@wff_app' _ nil); assumption. Qed. Lemma wff_app_post {g G t e1 e2} (wf : @wff var1 var2 G t e1 e2) : wff (G ++ g) e1 e2. Proof using Type. pose proof (@wff_app' g G nil t e1 e2) as H. rewrite !List.app_nil_r in *; auto. Qed. Lemma wff_in_impl_Proper G0 G1 {t} e1 e2 : @wff var1 var2 G0 t e1 e2 -> (forall x, List.In x G0 -> List.In x G1) -> @wff var1 var2 G1 t e1 e2. Proof using Type. intro wf; revert G1; induction wf; repeat match goal with | _ => setoid_rewrite List.in_app_iff | _ => progress intros | _ => progress simpl in * | [ |- wff _ _ _ ] => constructor | [ H : _ |- _ ] => apply H | _ => solve [ intuition eauto ] end. Qed. Local Hint Resolve List.in_app_or List.in_or_app. Local Hint Extern 1 => progress unfold List.In in *. Local Hint Resolve wff_in_impl_Proper. Lemma wff_SmartVarf {t} x1 x2 : @wff var1 var2 (flatten_binding_list x1 x2) t (SmartVarf x1) (SmartVarf x2). Proof using Type. unfold SmartVarf. induction t; simpl; constructor; eauto. Qed. Local Hint Resolve wff_SmartVarf. Lemma wff_SmartVarVarf G {t t'} v1 v2 x1 x2 (Hin : List.In (existT (fun t : base_type_code => (exprf (Tbase t) * exprf (Tbase t))%type) t (x1, x2)) (flatten_binding_list (SmartVarVarf v1) (SmartVarVarf v2))) : @wff var1 var2 (flatten_binding_list (t:=t') v1 v2 ++ G) (Tbase t) x1 x2. Proof using Type. revert dependent G; induction t'; intros; simpl in *; try tauto. { intuition (inversion_sigma; inversion_prod; subst; simpl; eauto). constructor; eauto. } { unfold SmartVarVarf in *; simpl in *. apply List.in_app_iff in Hin. intuition (inversion_sigma; inversion_prod; subst; eauto). { rewrite <- !List.app_assoc; eauto. } } Qed. Lemma wff_SmartVarVarf_nil {t t'} v1 v2 x1 x2 (Hin : List.In (existT (fun t : base_type_code => (exprf (Tbase t) * exprf (Tbase t))%type) t (x1, x2)) (flatten_binding_list (SmartVarVarf v1) (SmartVarVarf v2))) : @wff var1 var2 (flatten_binding_list (t:=t') v1 v2) (Tbase t) x1 x2. Proof using Type. apply wff_SmartVarVarf with (G:=nil) in Hin. rewrite List.app_nil_r in Hin; assumption. Qed. Lemma In_G_wff_SmartVarf G t v1 v2 e (Hwf : @wff var1 var2 G t (SmartVarf v1) (SmartVarf v2)) (Hin : List.In e (flatten_binding_list v1 v2)) : List.In e G. Proof using Type. induction t; repeat match goal with | _ => assumption | [ H : False |- _ ] => exfalso; assumption | _ => progress subst | _ => progress destruct_head' and | [ H : context[List.In _ (_ ++ _)] |- _ ] => rewrite List.in_app_iff in H | [ H : context[SmartVarf _] |- _ ] => rewrite SmartVarf_Pair in H | _ => progress simpl in * | _ => progress destruct_head' or | _ => solve [ eauto with nocore ] | _ => progress inversion_wf end. Qed. End with_var. Definition duplicate_type {var1 var2} : { t : base_type_code & (var1 t * var2 t)%type } -> { t1t2 : _ & (var1 (fst t1t2) * var2 (snd t1t2))%type } := fun txy => existT _ (projT1 txy, projT1 txy) (projT2 txy). Definition duplicate_types {var1 var2} := List.map (@duplicate_type var1 var2). Lemma flatten_binding_list_flatten_binding_list2 {var1 var2 t1} x1 x2 : duplicate_types (@flatten_binding_list base_type_code var1 var2 t1 x1 x2) = @flatten_binding_list2 base_type_code var1 var2 t1 t1 x1 x2. Proof using Type. induction t1; simpl; try reflexivity. rewrite_hyp <- !*. unfold duplicate_types; rewrite List.map_app; reflexivity. Qed. Local Ltac flatten_t := repeat first [ reflexivity | intro | progress simpl @flatten_binding_list | progress simpl @flatten_binding_list2 | rewrite !List.map_app | progress simpl in * | rewrite_hyp <- !*; reflexivity | rewrite_hyp !*; reflexivity ]. Lemma flatten_binding_list2_SmartVarfMap {var1 var1' var2 var2' t1 t2} f g (x1 : interp_flat_type var1 t1) (x2 : interp_flat_type var2 t2) : flatten_binding_list2 (var1:=var1') (var2:=var2') (base_type_code:=base_type_code) (SmartVarfMap f x1) (SmartVarfMap g x2) = List.map (fun txy => existT _ (projT1 txy) (f _ (fst (projT2 txy)), g _ (snd (projT2 txy)))%core) (flatten_binding_list2 x1 x2). Proof using Type. revert dependent t2; induction t1, t2; flatten_t. Qed. Lemma flatten_binding_list2_SmartVarfMap1 {var1 var1' var2' t1 t2} f (x1 : interp_flat_type var1 t1) (x2 : interp_flat_type var2' t2) : flatten_binding_list2 (var1:=var1') (var2:=var2') (base_type_code:=base_type_code) (SmartVarfMap f x1) x2 = List.map (fun txy => existT _ (projT1 txy) (f _ (fst (projT2 txy)), snd (projT2 txy))%core) (flatten_binding_list2 x1 x2). Proof using Type. revert dependent t2; induction t1, t2; flatten_t. Qed. Lemma flatten_binding_list2_SmartVarfMap2 {var1' var2 var2' t1 t2} g (x1 : interp_flat_type var1' t1) (x2 : interp_flat_type var2 t2) : flatten_binding_list2 (var1:=var1') (var2:=var2') (base_type_code:=base_type_code) x1 (SmartVarfMap g x2) = List.map (fun txy => existT _ (projT1 txy) (fst (projT2 txy), g _ (snd (projT2 txy)))%core) (flatten_binding_list2 x1 x2). Proof using Type. revert dependent t2; induction t1, t2; flatten_t. Qed. Lemma flatten_binding_list_SmartVarfMap {var1 var1' var2 var2' t} f g (x1 : interp_flat_type var1 t) (x2 : interp_flat_type var2 t) : flatten_binding_list (var1:=var1') (var2:=var2') (base_type_code:=base_type_code) (SmartVarfMap f x1) (SmartVarfMap g x2) = List.map (fun txy => existT _ (projT1 txy) (f _ (fst (projT2 txy)), g _ (snd (projT2 txy)))%core) (flatten_binding_list x1 x2). Proof using Type. induction t; flatten_t. Qed. Lemma flatten_binding_list2_SmartValf {T1 T2} f g t1 t2 : flatten_binding_list2 (base_type_code:=base_type_code) (SmartValf T1 f t1) (SmartValf T2 g t2) = List.map (fun txy => existT _ (projT1 txy) (f _, g _)%core) (flatten_binding_list2 (SmartFlatTypeUnMap t1) (SmartFlatTypeUnMap t2)). Proof using Type. revert dependent t2; induction t1, t2; flatten_t. Qed. Lemma flatten_binding_list_SmartValf {T1 T2} f g t : flatten_binding_list (base_type_code:=base_type_code) (SmartValf T1 f t) (SmartValf T2 g t) = List.map (fun txy => existT _ (projT1 txy) (f _, g _)%core) (flatten_binding_list (SmartFlatTypeUnMap t) (SmartFlatTypeUnMap t)). Proof using Type. induction t; flatten_t. Qed. Lemma flatten_binding_list_In_eq_iff {var} T x y : (forall t a b, List.In (existT _ t (a, b)) (@flatten_binding_list base_type_code var var T x y) -> a = b) <-> x = y. Proof using Type. induction T; repeat first [ exfalso; assumption | progress subst | progress inversion_sigma | progress inversion_prod | progress destruct_head' unit | progress destruct_head' prod | split | progress simpl in * | intro | progress destruct_head or | apply (f_equal2 (@pair _ _)) | progress split_iff | solve [ auto using List.in_or_app ] | match goal with | [ H : List.In _ (_ ++ _) |- _ ] => rewrite List.in_app_iff in H | [ H : forall x y, x = y -> forall t a b, List.In _ _ -> _, H' : List.In _ _ |- _ ] => specialize (H _ _ eq_refl _ _ _ H') end ]. Qed. Lemma flatten_binding_list_same_in_eq {var} {T x t a b} : List.In (existT _ t (a, b)) (@flatten_binding_list base_type_code var var T x x) -> a = b. Proof using Type. intro; eapply flatten_binding_list_In_eq_iff; eauto. Qed. Lemma flatten_binding_list_SmartVarfMap2_pair_In_split {var1 var1' var2 var2' T x x' y y' t a b} : List.In (existT _ t (a, b)) (@flatten_binding_list base_type_code _ _ T (SmartVarfMap2 (fun t (a : var1 t) (b : var2 t) => (a, b)) x y) (SmartVarfMap2 (fun t (a : var1' t) (b : var2' t) => (a, b)) x' y')) -> List.In (existT _ t (fst a, fst b)) (@flatten_binding_list base_type_code _ _ T x x') /\ List.In (existT _ t (snd a, snd b)) (@flatten_binding_list base_type_code _ _ T y y'). Proof using Type. induction T; repeat first [ exfalso; assumption | progress subst | progress inversion_sigma | progress inversion_prod | split | progress simpl in * | intro | progress destruct_head or | progress split_and | rewrite List.in_app_iff in * | solve [ eauto using List.in_or_app ] ]. Qed. Lemma flatten_binding_list_SmartVarfMap2_pair_In_eq2_iff {var1 var1' var2} T x x' y y' : (forall t a b, List.In (existT _ t (a, b)) (@flatten_binding_list base_type_code _ _ T (SmartVarfMap2 (fun t (a : var1 t) (b : var2 t) => (a, b)) x y) (SmartVarfMap2 (fun t (a : var1' t) (b : var2 t) => (a, b)) x' y')) -> snd a = snd b) <-> y = y'. Proof using Type. induction T; repeat first [ exfalso; assumption | progress subst | progress inversion_sigma | progress inversion_prod | progress destruct_head' unit | progress destruct_head' prod | split | progress simpl in * | intro | progress destruct_head or | apply (f_equal2 (@pair _ _)) | progress split_iff | solve [ auto using List.in_or_app ] | match goal with | [ H : List.In _ (_ ++ _) |- _ ] => rewrite List.in_app_iff in H | [ H : context[List.In _ (_ ++ _)] |- _ ] => setoid_rewrite List.in_app_iff in H | [ H : forall x y, x = y -> forall t a b, List.In _ _ -> _, H' : List.In _ _ |- _ ] => specialize (H _ _ eq_refl _ _ _ H') | [ H : forall x x' y y', y = y' -> forall t a b, List.In _ _ -> _, H' : List.In _ _ |- _ ] => specialize (H _ _ _ _ eq_refl _ _ _ H') | [ H : forall t a b, _ \/ _ -> _ |- _ ] => pose proof (fun t a b pf => H t a b (or_introl pf)); pose proof (fun t a b pf => H t a b (or_intror pf)); clear H | [ H : forall t a b, _ |- _ ] => solve [ eapply (H _ (_, _) (_, _)); eauto ] | [ H : forall x x' y y', _ -> y = y' |- ?Y = ?Y' ] => specialize (fun x x' => H x x' Y Y') | [ H : forall x x', (forall t a b, List.In _ _ -> _ = _) -> _, H' : forall t' a' b', List.In _ _ -> _ = _ |- _ ] => specialize (H _ _ H') end ]. Qed. Lemma flatten_binding_list_SmartVarfMap2_pair_same_in_eq2 {var1 var1' var2} {T x x' y t a b} : List.In (existT _ t (a, b)) (@flatten_binding_list base_type_code _ _ T (SmartVarfMap2 (fun t (a : var1 t) (b : var2 t) => (a, b)) x y) (SmartVarfMap2 (fun t (a : var1' t) (b : var2 t) => (a, b)) x' y)) -> snd a = snd b. Proof using Type. intro; eapply flatten_binding_list_SmartVarfMap2_pair_In_eq2_iff; eauto. Qed. Lemma flatten_binding_list_SmartVarfMap2_pair_in_generalize2 {var1 var1' var2 var2' var3 var3'} {T x x' y y' t a b} : List.In (existT _ t (a, b)) (@flatten_binding_list base_type_code _ _ T (SmartVarfMap2 (fun t (a : var1 t) (b : var2 t) => (a, b)) x y) (SmartVarfMap2 (fun t (a : var1' t) (b : var2' t) => (a, b)) x' y')) -> (forall z z', exists a' b', List.In (existT _ t ((fst a, a'), (fst b, b'))) (@flatten_binding_list base_type_code _ _ T (SmartVarfMap2 (fun t (a : var1 t) (b : var3 t) => (a, b)) x z) (SmartVarfMap2 (fun t (a : var1' t) (b : var3' t) => (a, b)) x' z'))). Proof. induction T; repeat first [ progress intros | progress subst | progress inversion_sigma | progress inversion_prod | progress simpl in * | progress destruct_head'_or | progress destruct_head'_prod | progress destruct_head'_ex | tauto | solve [ eauto ] | progress specialize_by_assumption | setoid_rewrite List.in_app_iff | match goal with | [ H : context[List.In _ (_ ++ _)] |- _ ] => setoid_rewrite List.in_app_iff in H | [ H : forall x : interp_flat_type ?var ?T, _, x' : interp_flat_type ?var ?T |- _ ] => specialize (H x') end ]. Qed. End language. Hint Resolve wff_SmartVarf wff_SmartVarVarf wff_SmartVarVarf_nil : wf.