Require Import Crypto.Compilers.Syntax. Require Import Crypto.Compilers.TypeInversion. Require Import Crypto.Util.Sigma. Require Import Crypto.Util.Option. Require Import Crypto.Util.Prod. Require Import Crypto.Util.Tactics.DestructHead. Require Import Crypto.Util.Tactics.BreakMatch. Require Import Crypto.Util.Notations. Section language. Context {base_type_code : Type} {interp_base_type : base_type_code -> Type} {op : flat_type base_type_code -> flat_type base_type_code -> Type}. Local Notation flat_type := (flat_type base_type_code). Local Notation type := (type base_type_code). Local Notation interp_type := (interp_type interp_base_type). Local Notation interp_flat_type_gen := interp_flat_type. Local Notation interp_flat_type := (interp_flat_type interp_base_type). Local Notation Expr := (@Expr base_type_code op). Section with_var. Context {var : base_type_code -> Type}. Local Notation exprf := (@exprf base_type_code op var). Local Notation expr := (@expr base_type_code op var). Definition invert_Var {t} (e : exprf (Tbase t)) : option (var t) := match e in Syntax.exprf _ _ t' return option (var match t' with | Tbase t' => t' | _ => t end) with | Var _ v => Some v | _ => None end. Definition invert_Op {t} (e : exprf t) : option { t1 : flat_type & op t1 t * exprf t1 }%type := match e with Op _ _ opc args => Some (existT _ _ (opc, args)) | _ => None end. Definition invert_LetIn {A} (e : exprf A) : option { B : _ & exprf B * (Syntax.interp_flat_type var B -> exprf A) }%type := match e in Syntax.exprf _ _ t return option { B : _ & _ * (_ -> exprf t) }%type with | LetIn _ ex _ eC => Some (existT _ _ (ex, eC)) | _ => None end. Definition invert_Pair {A B} (e : exprf (Prod A B)) : option (exprf A * exprf B) := match e in Syntax.exprf _ _ t return option match t with | Prod _ _ => _ | _ => unit end with | Pair _ x _ y => Some (x, y)%core | _ => None end. Definition invert_Abs {T} (e : expr T) : interp_flat_type_gen var (domain T) -> exprf (codomain T) := match e with Abs _ _ f => f end. Section const. Context (invert_Const : forall s d, op s d -> exprf s -> option (interp_flat_type d)). Fixpoint lift_option {t} : interp_flat_type t -> interp_flat_type_gen (fun t => option (interp_base_type t)) t := match t with | Tbase T => fun x => Some x | Unit => fun _ => tt | Prod A B => fun (ab : interp_flat_type A * interp_flat_type B) => let '(a, b) := ab in (lift_option a, lift_option b) end. Fixpoint invert_PairsConst_gen {T} (e : exprf T) : option (interp_flat_type_gen (fun t => option (interp_base_type t)) T) := match e in Syntax.exprf _ _ t return option (interp_flat_type_gen (fun t => option (interp_base_type t)) t) with | TT => Some tt | Pair tx ex ty ey => match @invert_PairsConst_gen tx ex, @invert_PairsConst_gen ty ey with | Some x, Some y => Some (x, y) | Some _, None | None, Some _ | None, None => None end | Op s d opv args => option_map lift_option (invert_Const s d opv args) | Var _ _ | LetIn _ _ _ _ => None end. Fixpoint invert_PairsConst {T} (e : exprf T) : option (interp_flat_type T) := match e in Syntax.exprf _ _ t return option (interp_flat_type t) with | TT => Some tt | Pair tx ex ty ey => match @invert_PairsConst tx ex, @invert_PairsConst ty ey with | Some x, Some y => Some (x, y) | Some _, None | None, Some _ | None, None => None end | Op s d opv args => invert_Const s d opv args | Var _ _ | LetIn _ _ _ _ => None end. End const. Fixpoint invert_Pairs {T} (e : exprf T) : option (interp_flat_type_gen (fun ty => exprf (Tbase ty)) T) := match e in Syntax.exprf _ _ t return option (interp_flat_type_gen (fun ty => exprf (Tbase ty)) t) with | TT => Some tt | Var t _ as e => Some e | Pair tx ex ty ey => match @invert_Pairs tx ex, @invert_Pairs ty ey with | Some x, Some y => Some (x, y) | Some _, None | None, Some _ | None, None => None end | Op _ t _ _ as e | LetIn _ _ t _ as e => match t return exprf t -> option (interp_flat_type_gen _ t) with | Tbase _ => fun e => Some e | _ => fun _ => None end e end. Definition compose {A B C} (f : expr (B -> C)) (g : expr (A -> B)) : expr (A -> C) := Abs (fun v => LetIn (invert_Abs g v) (invert_Abs f)). Definition exprf_code {t} (e : exprf t) : exprf t -> Prop := match e with | TT => fun e' => TT = e' | Var _ v => fun e' => invert_Var e' = Some v | Pair _ x _ y => fun e' => invert_Pair e' = Some (x, y)%core | Op _ _ opc args => fun e' => invert_Op e' = Some (existT _ _ (opc, args)%core) | LetIn _ ex _ eC => fun e' => invert_LetIn e' = Some (existT _ _ (ex, eC)%core) end. Definition expr_code {t} (e1 e2 : expr t) : Prop := invert_Abs e1 = invert_Abs e2. Definition exprf_encode {t} (x y : exprf t) : x = y -> exprf_code x y. Proof. intro p; destruct p, x; reflexivity. Defined. Definition expr_encode {t} (x y : expr t) : x = y -> expr_code x y. Proof. intro p; destruct p, x; reflexivity. Defined. Local Ltac t' := repeat first [ intro | progress simpl in * | reflexivity | assumption | progress destruct_head False | progress subst | progress inversion_option | progress inversion_sigma | progress break_match ]. Local Ltac t := lazymatch goal with | [ |- _ = Some ?v -> ?e = _ ] => revert v; refine match e with | Var _ _ => _ | _ => _ end | [ |- _ = ?v -> ?e = _ ] => revert v; refine match e with | Abs _ _ _ => _ end end; t'. Lemma invert_Var_Some {t e v} : @invert_Var t e = Some v -> e = Var v. Proof. t. Defined. Lemma invert_Op_Some {t e v} : @invert_Op t e = Some v -> e = Op (fst (projT2 v)) (snd (projT2 v)). Proof. t. Defined. Lemma invert_LetIn_Some {t e v} : @invert_LetIn t e = Some v -> e = LetIn (fst (projT2 v)) (snd (projT2 v)). Proof. t. Defined. Lemma invert_Pair_Some {A B e v} : @invert_Pair A B e = Some v -> e = Pair (fst v) (snd v). Proof. t. Defined. Lemma invert_Abs_Some {A B e v} : @invert_Abs (Arrow A B) e = v -> e = Abs v. Proof. t. Defined. Definition exprf_decode {t} (x y : exprf t) : exprf_code x y -> x = y. Proof. destruct x; simpl; trivial; intro H; first [ apply invert_Var_Some in H | apply invert_Op_Some in H | apply invert_LetIn_Some in H | apply invert_Pair_Some in H ]; symmetry; assumption. Defined. Definition expr_decode {t} (x y : expr t) : expr_code x y -> x = y. Proof. destruct x; unfold expr_code; simpl. intro H; symmetry in H. apply invert_Abs_Some in H. symmetry; assumption. Defined. Definition path_exprf_rect {t} {x y : exprf t} (Q : x = y -> Type) (f : forall p, Q (exprf_decode x y p)) : forall p, Q p. Proof. intro p; specialize (f (exprf_encode x y p)); destruct x, p; exact f. Defined. Definition path_expr_rect {t} {x y : expr t} (Q : x = y -> Type) (f : forall p, Q (expr_decode x y p)) : forall p, Q p. Proof. intro p; specialize (f (expr_encode x y p)); destruct x, p; exact f. Defined. End with_var. Lemma interpf_invert_Abs interp_op {T e} x : Syntax.interpf interp_op (@invert_Abs interp_base_type T e x) = Syntax.interp interp_op e x. Proof using Type. destruct e; reflexivity. Qed. Lemma interpf_invert_PairsConst invert_Const interp_op {T} e v (Hinvert_Const : forall s d opc e v, invert_Const s d opc e = Some v -> interp_op s d opc (interpf interp_op e) = v) (H : invert_PairsConst (T:=T) invert_Const e = Some v) : Syntax.interpf interp_op e = v. Proof using Type. induction e; repeat first [ reflexivity | progress subst | solve [ auto ] | progress inversion_option | progress inversion_prod | progress simpl in * | progress break_innermost_match_hyps | apply (f_equal2 (@pair _ _)) ]. Qed. Definition Compose {A B C} (f : Expr (B -> C)) (g : Expr (A -> B)) : Expr (A -> C) := fun var => compose (f var) (g var). Lemma InterpCompose {A B C} interp_op f g : forall x, Interp interp_op (@Compose A B C f g) x = Interp interp_op f (Interp (interp_base_type:=interp_base_type) interp_op g x). Proof. reflexivity. Qed. End language. Global Arguments invert_Var {_ _ _ _} _. Global Arguments invert_Op {_ _ _ _} _. Global Arguments invert_LetIn {_ _ _ _} _. Global Arguments invert_Pair {_ _ _ _ _} _. Global Arguments invert_Pairs {_ _ _ _} _. Global Arguments invert_PairsConst {_ _ _ _} _ {T} _. Global Arguments invert_Abs {_ _ _ _} _ _. Hint Rewrite @InterpCompose : reflective_rewrite. Module Export Notations. Infix "∘" := Compose : expr_scope. Infix "∘f" := compose : expr_scope. Infix "∘ᶠ" := compose : expr_scope. End Notations. Ltac invert_one_expr e := preinvert_one_type e; intros ? e; destruct e; try exact I. Ltac invert_expr_step := match goal with | [ e : exprf _ _ (Tbase _) |- _ ] => invert_one_expr e | [ e : exprf _ _ (Prod _ _) |- _ ] => invert_one_expr e | [ e : exprf _ _ Unit |- _ ] => invert_one_expr e | [ e : expr _ _ (Arrow _ _) |- _ ] => invert_one_expr e end. Ltac invert_expr := repeat invert_expr_step. Ltac invert_match_expr_step := match goal with | [ |- context[match ?e with TT => _ | _ => _ end] ] => invert_one_expr e | [ |- context[match ?e with Abs _ _ _ => _ end] ] => invert_one_expr e | [ H : context[match ?e with TT => _ | _ => _ end] |- _ ] => invert_one_expr e | [ H : context[match ?e with Abs _ _ _ => _ end] |- _ ] => invert_one_expr e end. Ltac invert_match_expr := repeat invert_match_expr_step. Ltac invert_expr_subst_step_helper guard_tac := match goal with | [ H : invert_Var ?e = Some _ |- _ ] => guard_tac H; apply invert_Var_Some in H | [ H : invert_Op ?e = Some _ |- _ ] => guard_tac H; apply invert_Op_Some in H | [ H : invert_LetIn ?e = Some _ |- _ ] => guard_tac H; apply invert_LetIn_Some in H | [ H : invert_Pair ?e = Some _ |- _ ] => guard_tac H; apply invert_Pair_Some in H | [ e : expr _ _ _ |- _ ] => guard_tac e; let f := fresh e in let H := fresh in rename e into f; remember (invert_Abs f) as e eqn:H; symmetry in H; apply invert_Abs_Some in H; subst f | [ H : invert_Abs ?e = _ |- _ ] => guard_tac H; apply invert_Abs_Some in H end. Ltac invert_expr_subst_step := first [ invert_expr_subst_step_helper ltac:(fun _ => idtac) | subst ]. Ltac invert_expr_subst := repeat invert_expr_subst_step. Ltac induction_expr_in_using H rect := induction H as [H] using (rect _ _ _); cbv [exprf_code expr_code invert_Var invert_LetIn invert_Pair invert_Op invert_Abs] in H; try lazymatch type of H with | Some _ = Some _ => apply option_leq_to_eq in H; unfold option_eq in H | Some _ = None => exfalso; clear -H; solve [ inversion H ] | None = Some _ => exfalso; clear -H; solve [ inversion H ] end; let H1 := fresh H in let H2 := fresh H in try lazymatch type of H with | existT _ _ _ = existT _ _ _ => induction_sigma_in_using H @path_sigT_rect end; try lazymatch type of H2 with | _ = (_, _)%core => induction_path_prod H2 end. Ltac inversion_expr_step := match goal with | [ H : _ = Var _ |- _ ] => induction_expr_in_using H @path_exprf_rect | [ H : _ = TT |- _ ] => induction_expr_in_using H @path_exprf_rect | [ H : _ = Op _ _ |- _ ] => induction_expr_in_using H @path_exprf_rect | [ H : _ = Pair _ _ |- _ ] => induction_expr_in_using H @path_exprf_rect | [ H : _ = LetIn _ _ |- _ ] => induction_expr_in_using H @path_exprf_rect | [ H : _ = Abs _ |- _ ] => induction_expr_in_using H @path_expr_rect | [ H : Var _ = _ |- _ ] => induction_expr_in_using H @path_exprf_rect | [ H : TT = _ |- _ ] => induction_expr_in_using H @path_exprf_rect | [ H : Op _ _ = _ |- _ ] => induction_expr_in_using H @path_exprf_rect | [ H : Pair _ _ = _ |- _ ] => induction_expr_in_using H @path_exprf_rect | [ H : LetIn _ _ = _ |- _ ] => induction_expr_in_using H @path_exprf_rect | [ H : Abs _ = _ |- _ ] => induction_expr_in_using H @path_expr_rect end. Ltac inversion_expr := repeat inversion_expr_step.