Require Import Coq.Lists.List. Require Import Crypto.Util.ListUtil Crypto.Util.CaseUtil Crypto.Util.ZUtil. Require Import Coq.ZArith.ZArith Coq.ZArith.Zdiv. Require Import Coq.omega.Omega Coq.Numbers.Natural.Peano.NPeano Coq.Arith.Arith. Require Import Crypto.BaseSystem. Require Import Crypto.Util.Notations. Local Open Scope Z. Local Infix ".+" := add. Local Hint Extern 1 (@eq Z _ _) => ring. Section BaseSystemProofs. Context `(base_vector : BaseVector). Lemma decode'_truncate : forall bs us, decode' bs us = decode' bs (firstn (length bs) us). Proof. unfold decode'; intros; f_equal; apply combine_truncate_l. Qed. Lemma decode'_splice : forall xs ys bs, decode' bs (xs ++ ys) = decode' (firstn (length xs) bs) xs + decode' (skipn (length xs) bs) ys. Proof. unfold decode'. induction xs; destruct ys, bs; boring. + rewrite combine_truncate_r. do 2 rewrite Z.add_0_r; auto. + unfold accumulate. apply Z.add_assoc. Qed. Lemma add_rep : forall bs us vs, decode' bs (add us vs) = decode' bs us + decode' bs vs. Proof. unfold decode', accumulate; induction bs; destruct us, vs; boring; ring. Qed. Lemma decode_nil : forall bs, decode' bs nil = 0. auto. Qed. Hint Rewrite decode_nil. Lemma decode_base_nil : forall us, decode' nil us = 0. Proof. intros; rewrite decode'_truncate; auto. Qed. Hint Rewrite decode_base_nil. Lemma mul_each_rep : forall bs u vs, decode' bs (mul_each u vs) = u * decode' bs vs. Proof. unfold decode', accumulate; induction bs; destruct vs; boring; ring. Qed. Lemma base_eq_1cons: base = 1 :: skipn 1 base. Proof. pose proof (b0_1 0) as H. destruct base; compute in H; try discriminate; boring. Qed. Lemma decode'_cons : forall x1 x2 xs1 xs2, decode' (x1 :: xs1) (x2 :: xs2) = x1 * x2 + decode' xs1 xs2. Proof. unfold decode', accumulate; boring; ring. Qed. Hint Rewrite decode'_cons. Lemma decode_cons : forall x us, decode base (x :: us) = x + decode base (0 :: us). Proof. unfold decode; intros. rewrite base_eq_1cons. autorewrite with core; ring_simplify; auto. Qed. Lemma sub_rep : forall bs us vs, decode' bs (sub us vs) = decode' bs us - decode' bs vs. Proof. induction bs; destruct us; destruct vs; boring; ring. Qed. Lemma nth_default_base_nonzero : forall d, d <> 0 -> forall i, nth_default d base i <> 0. Proof. intros. rewrite nth_default_eq. destruct (nth_in_or_default i base d). + auto using Z.positive_is_nonzero, base_positive. + congruence. Qed. Lemma nth_default_base_pos : forall d, 0 < d -> forall i, 0 < nth_default d base i. Proof. intros. rewrite nth_default_eq. destruct (nth_in_or_default i base d). + apply Z.gt_lt; auto using base_positive. + congruence. Qed. Lemma mul_each_base : forall us bs c, decode' bs (mul_each c us) = decode' (mul_each c bs) us. Proof. induction us; destruct bs; boring; ring. Qed. Hint Rewrite (@nth_default_nil Z). Hint Rewrite (@firstn_nil Z). Hint Rewrite (@skipn_nil Z). Lemma base_app : forall us low high, decode' (low ++ high) us = decode' low (firstn (length low) us) + decode' high (skipn (length low) us). Proof. induction us; destruct low; boring. Qed. Lemma base_mul_app : forall low c us, decode' (low ++ mul_each c low) us = decode' low (firstn (length low) us) + c * decode' low (skipn (length low) us). Proof. intros. rewrite base_app; f_equal. rewrite <- mul_each_rep. rewrite mul_each_base. reflexivity. Qed. Lemma zeros_rep : forall bs n, decode' bs (zeros n) = 0. induction bs; destruct n; boring. Qed. Lemma length_zeros : forall n, length (zeros n) = n. induction n; boring. Qed. Hint Rewrite length_zeros. Lemma app_zeros_zeros : forall n m, zeros n ++ zeros m = zeros (n + m)%nat. Proof. induction n; boring. Qed. Hint Rewrite app_zeros_zeros. Lemma zeros_app0 : forall m, zeros m ++ 0 :: nil = zeros (S m). Proof. induction m; boring. Qed. Hint Rewrite zeros_app0. Lemma nth_default_zeros : forall n i, nth_default 0 (BaseSystem.zeros n) i = 0. Proof. induction n; intros; [ cbv [BaseSystem.zeros]; apply nth_default_nil | ]. rewrite <-zeros_app0, nth_default_app. rewrite length_zeros. destruct (lt_dec i n); auto. destruct (eq_nat_dec i n); subst. + rewrite Nat.sub_diag; apply nth_default_cons. + apply nth_default_out_of_bounds. cbv [length]; omega. Qed. Lemma rev_zeros : forall n, rev (zeros n) = zeros n. Proof. induction n; boring. Qed. Hint Rewrite rev_zeros. Hint Unfold nth_default. Lemma decode_single : forall n bs x, decode' bs (zeros n ++ x :: nil) = nth_default 0 bs n * x. Proof. induction n; destruct bs; boring. Qed. Hint Rewrite decode_single. Lemma peel_decode : forall xs ys x y, decode' (x::xs) (y::ys) = x*y + decode' xs ys. Proof. boring. Qed. Hint Rewrite zeros_rep peel_decode. Lemma decode_highzeros : forall xs bs n, decode' bs (xs ++ zeros n) = decode' bs xs. Proof. induction xs; destruct bs; boring. Qed. Lemma mul_bi'_zeros : forall n m, mul_bi' base n (zeros m) = zeros m. induction m; boring. Qed. Hint Rewrite mul_bi'_zeros. Lemma nth_error_base_nonzero : forall n x, nth_error base n = Some x -> x <> 0. Proof. eauto using (@nth_error_value_In Z), Z.gt0_neq0, base_positive. Qed. Hint Rewrite plus_0_r. Lemma mul_bi_single : forall m n x, (n + m < length base)%nat -> decode base (mul_bi base n (zeros m ++ x :: nil)) = nth_default 0 base m * x * nth_default 0 base n. Proof. unfold mul_bi, decode. destruct m; simpl; simpl_list; simpl; intros. { pose proof nth_error_base_nonzero as nth_nonzero. case_eq base; [intros; boring | intros z l base_eq]. specialize (b0_1 0); intro b0_1'. rewrite base_eq in *. rewrite nth_default_cons in b0_1'. rewrite b0_1' in *. unfold crosscoef. autounfold; autorewrite with core. unfold nth_default. nth_tac. rewrite Z.mul_1_r. rewrite Z_div_same_full. destruct x; ring. eapply nth_nonzero; eauto. } { ssimpl_list. autorewrite with core. rewrite app_assoc. autorewrite with core. unfold crosscoef; simpl; ring_simplify. rewrite Nat.add_1_r. rewrite base_good by auto. rewrite Z_div_mult by (apply base_positive; rewrite nth_default_eq; apply nth_In; auto). rewrite <- Z.mul_assoc. rewrite <- Z.mul_comm. rewrite <- Z.mul_assoc. rewrite <- Z.mul_assoc. destruct (Z.eq_dec x 0); subst; try ring. rewrite Z.mul_cancel_l by auto. rewrite <- base_good by auto. ring. } Qed. Lemma set_higher' : forall vs x, vs++x::nil = vs .+ (zeros (length vs) ++ x :: nil). induction vs; boring; f_equal; ring. Qed. Lemma set_higher : forall bs vs x, decode' bs (vs++x::nil) = decode' bs vs + nth_default 0 bs (length vs) * x. Proof. intros. rewrite set_higher'. rewrite add_rep. f_equal. apply decode_single. Qed. Lemma zeros_plus_zeros : forall n, zeros n = zeros n .+ zeros n. induction n; auto. simpl; f_equal; auto. Qed. Lemma mul_bi'_n_nil : forall n, mul_bi' base n nil = nil. Proof. unfold mul_bi; auto. Qed. Hint Rewrite mul_bi'_n_nil. Lemma add_nil_l : forall us, nil .+ us = us. induction us; auto. Qed. Hint Rewrite add_nil_l. Lemma add_nil_r : forall us, us .+ nil = us. induction us; auto. Qed. Hint Rewrite add_nil_r. Lemma add_first_terms : forall us vs a b, (a :: us) .+ (b :: vs) = (a + b) :: (us .+ vs). auto. Qed. Hint Rewrite add_first_terms. Lemma mul_bi'_cons : forall n x us, mul_bi' base n (x :: us) = x * crosscoef base n (length us) :: mul_bi' base n us. Proof. unfold mul_bi'; auto. Qed. Lemma add_same_length : forall us vs l, (length us = l) -> (length vs = l) -> length (us .+ vs) = l. Proof. induction us, vs; boring. erewrite (IHus vs (pred l)); boring. Qed. Hint Rewrite app_nil_l. Hint Rewrite app_nil_r. Lemma add_snoc_same_length : forall l us vs a b, (length us = l) -> (length vs = l) -> (us ++ a :: nil) .+ (vs ++ b :: nil) = (us .+ vs) ++ (a + b) :: nil. Proof. induction l, us, vs; boring; discriminate. Qed. Lemma mul_bi'_add : forall us n vs l (Hlus: length us = l) (Hlvs: length vs = l), mul_bi' base n (rev (us .+ vs)) = mul_bi' base n (rev us) .+ mul_bi' base n (rev vs). Proof. (* TODO(adamc): please help prettify this *) induction us using rev_ind; try solve [destruct vs; boring; congruence]. destruct vs using rev_ind; boring; clear IHvs; simpl_list. erewrite (add_snoc_same_length (pred l) us vs _ _); simpl_list. repeat rewrite mul_bi'_cons; rewrite add_first_terms; simpl_list. rewrite (IHus n vs (pred l)). replace (length us) with (pred l). replace (length vs) with (pred l). rewrite (add_same_length us vs (pred l)). f_equal; ring. erewrite length_snoc; eauto. erewrite length_snoc; eauto. erewrite length_snoc; eauto. erewrite length_snoc; eauto. erewrite length_snoc; eauto. erewrite length_snoc; eauto. erewrite length_snoc; eauto. erewrite length_snoc; eauto. Qed. Lemma zeros_cons0 : forall n, 0 :: zeros n = zeros (S n). auto. Qed. Lemma add_leading_zeros : forall n us vs, (zeros n ++ us) .+ (zeros n ++ vs) = zeros n ++ (us .+ vs). Proof. induction n; boring. Qed. Lemma rev_add_rev : forall us vs l, (length us = l) -> (length vs = l) -> (rev us) .+ (rev vs) = rev (us .+ vs). Proof. induction us, vs; boring; try solve [subst; discriminate]. rewrite (add_snoc_same_length (pred l) _ _ _ _) by (subst; simpl_list; omega). rewrite (IHus vs (pred l)) by omega; auto. Qed. Hint Rewrite rev_add_rev. Lemma mul_bi'_length : forall us n, length (mul_bi' base n us) = length us. Proof. induction us, n; boring. Qed. Hint Rewrite mul_bi'_length. Lemma add_comm : forall us vs, us .+ vs = vs .+ us. Proof. induction us, vs; boring; f_equal; auto. Qed. Hint Rewrite rev_length. Lemma mul_bi_add_same_length : forall n us vs l, (length us = l) -> (length vs = l) -> mul_bi base n (us .+ vs) = mul_bi base n us .+ mul_bi base n vs. Proof. unfold mul_bi; boring. rewrite add_leading_zeros. erewrite mul_bi'_add; boring. erewrite rev_add_rev; boring. Qed. Lemma add_zeros_same_length : forall us, us .+ (zeros (length us)) = us. Proof. induction us; boring; f_equal; omega. Qed. Hint Rewrite add_zeros_same_length. Hint Rewrite minus_diag. Lemma add_trailing_zeros : forall us vs, (length us >= length vs)%nat -> us .+ vs = us .+ (vs ++ (zeros (length us - length vs)%nat)). Proof. induction us, vs; boring; f_equal; boring. Qed. Lemma length_add_ge : forall us vs, (length us >= length vs)%nat -> (length (us .+ vs) <= length us)%nat. Proof. intros. rewrite add_trailing_zeros by trivial. erewrite add_same_length by (pose proof app_length; boring); omega. Qed. Lemma add_length_le_max : forall us vs, (length (us .+ vs) <= max (length us) (length vs))%nat. Proof. intros; case_max; (rewrite add_comm; apply length_add_ge; omega) || (apply length_add_ge; omega) . Qed. Lemma sub_nil_length: forall us : digits, length (sub nil us) = length us. Proof. induction us; boring. Qed. Lemma sub_length : forall us vs, (length (sub us vs) = max (length us) (length vs))%nat. Proof. induction us, vs; boring. rewrite sub_nil_length; auto. Qed. Lemma mul_bi_length : forall us n, length (mul_bi base n us) = (length us + n)%nat. Proof. pose proof mul_bi'_length; unfold mul_bi. destruct us; repeat progress (simpl_list; boring). Qed. Hint Rewrite mul_bi_length. Lemma mul_bi_trailing_zeros : forall m n us, mul_bi base n us ++ zeros m = mul_bi base n (us ++ zeros m). Proof. unfold mul_bi. induction m; intros; try solve [boring]. rewrite <- zeros_app0. rewrite app_assoc. repeat progress (boring; rewrite rev_app_distr). Qed. Lemma mul_bi_add_longer : forall n us vs, (length us >= length vs)%nat -> mul_bi base n (us .+ vs) = mul_bi base n us .+ mul_bi base n vs. Proof. boring. rewrite add_trailing_zeros by auto. rewrite (add_trailing_zeros (mul_bi base n us) (mul_bi base n vs)) by (repeat (rewrite mul_bi_length); omega). erewrite mul_bi_add_same_length by (eauto; simpl_list; rewrite length_zeros; omega). rewrite mul_bi_trailing_zeros. repeat (f_equal; boring). Qed. Lemma mul_bi_add : forall n us vs, mul_bi base n (us .+ vs) = (mul_bi base n us) .+ (mul_bi base n vs). Proof. intros; pose proof mul_bi_add_longer. destruct (le_ge_dec (length us) (length vs)). { rewrite add_comm. rewrite (add_comm (mul_bi base n us)). boring. } { boring. } Qed. Lemma mul_bi_rep : forall i vs, (i + length vs < length base)%nat -> decode base (mul_bi base i vs) = decode base vs * nth_default 0 base i. Proof. unfold decode. induction vs using rev_ind; intros; try solve [unfold mul_bi; boring]. assert (i + length vs < length base)%nat by (rewrite app_length in *; boring). rewrite set_higher. ring_simplify. rewrite <- IHvs by auto; clear IHvs. rewrite <- mul_bi_single by auto. rewrite <- add_rep. rewrite <- mul_bi_add. rewrite set_higher'. auto. Qed. Local Notation mul' := (mul' base). Local Notation mul := (mul base). Lemma mul'_rep : forall us vs, (length us + length vs <= length base)%nat -> decode base (mul' (rev us) vs) = decode base us * decode base vs. Proof. unfold decode. induction us using rev_ind; boring. assert (length us + length vs < length base)%nat by (rewrite app_length in *; boring). ssimpl_list. rewrite add_rep. boring. rewrite set_higher. rewrite mul_each_rep. rewrite mul_bi_rep by auto. unfold decode; ring. Qed. Lemma mul_rep : forall us vs, (length us + length vs <= length base)%nat -> decode base (mul us vs) = decode base us * decode base vs. Proof. exact mul'_rep. Qed. Lemma mul'_length: forall us vs, (length (mul' us vs) <= length us + length vs)%nat. Proof. pose proof add_length_le_max. induction us; boring. unfold mul_each. simpl_list; case_max; boring; omega. Qed. Lemma mul_length: forall us vs, (length (mul us vs) <= length us + length vs)%nat. Proof. intros; unfold BaseSystem.mul. rewrite mul'_length. rewrite rev_length; omega. Qed. Lemma add_length_exact : forall us vs, length (us .+ vs) = max (length us) (length vs). Proof. induction us; destruct vs; boring. Qed. Hint Rewrite add_length_exact : distr_length. Lemma mul'_length_exact_full: forall us vs, (length (mul' us vs) = match length us with | 0 => 0%nat | _ => pred (length us + length vs) end)%nat. Proof. induction us; intros; try solve [boring]. unfold BaseSystem.mul'; fold mul'. unfold mul_each. rewrite add_length_exact, map_length, mul_bi_length, length_cons. destruct us. + rewrite Max.max_0_r. simpl; omega. + rewrite Max.max_l; [ omega | ]. rewrite IHus by ( congruence || simpl in *; omega). simpl; omega. Qed. Hint Rewrite mul'_length_exact_full : distr_length. (* TODO(@jadephilipoom, from jgross): one of these conditions isn't needed. Should it be dropped, or was there a reason to keep it? *) Lemma mul'_length_exact: forall us vs, (length us <= length vs)%nat -> us <> nil -> (length (mul' us vs) = pred (length us + length vs))%nat. Proof. intros; rewrite mul'_length_exact_full; destruct us; simpl; congruence. Qed. Lemma mul_length_exact_full: forall us vs, (length (mul us vs) = match length us with | 0 => 0 | _ => pred (length us + length vs) end)%nat. Proof. intros; unfold BaseSystem.mul; autorewrite with distr_length; reflexivity. Qed. Hint Rewrite mul_length_exact_full : distr_length. (* TODO(@jadephilipoom, from jgross): one of these conditions isn't needed. Should it be dropped, or was there a reason to keep it? *) Lemma mul_length_exact: forall us vs, (length us <= length vs)%nat -> us <> nil -> (length (mul us vs) = pred (length us + length vs))%nat. Proof. intros; unfold BaseSystem.mul. rewrite mul'_length_exact; rewrite ?rev_length; try omega. intro rev_nil. match goal with H : us <> nil |- _ => apply H end. apply length0_nil; rewrite <-rev_length, rev_nil. reflexivity. Qed. Definition encode'_zero z max : encode' base z max 0%nat = nil := eq_refl. Definition encode'_succ z max i : encode' base z max (S i) = encode' base z max i ++ ((z mod (nth_default max base (S i))) / (nth_default max base i)) :: nil := eq_refl. Opaque encode'. Hint Resolve encode'_zero encode'_succ. Lemma encode'_length : forall z max i, length (encode' base z max i) = i. Proof. induction i; auto. rewrite encode'_succ, app_length, IHi. cbv [length]. omega. Qed. (* States that each element of the base is a positive integer multiple of the previous element, and that max is a positive integer multiple of the last element. Ideally this would have a better name. *) Definition base_max_succ_divide max := forall i, (S i <= length base)%nat -> Z.divide (nth_default max base i) (nth_default max base (S i)). Lemma encode'_spec : forall z max, 0 < max -> base_max_succ_divide max -> forall i, (i <= length base)%nat -> decode' base (encode' base z max i) = z mod (nth_default max base i). Proof. induction i; intros. + rewrite encode'_zero, b0_1, Z.mod_1_r. apply decode_nil. + rewrite encode'_succ, set_higher. rewrite IHi by omega. rewrite encode'_length, (Z.add_comm (z mod nth_default max base i)). replace (nth_default 0 base i) with (nth_default max base i) by (rewrite !nth_default_eq; apply nth_indep; omega). match goal with H1 : base_max_succ_divide _, H2 : (S i <= length base)%nat, H3 : 0 < max |- _ => specialize (H1 i H2); rewrite (Znumtheory.Zmod_div_mod _ _ _ (nth_default_base_pos _ H _) (nth_default_base_pos _ H _) H0) end. rewrite <-Z.div_mod by (apply Z.positive_is_nonzero, Z.lt_gt; auto using nth_default_base_pos). reflexivity. Qed. Lemma encode_rep : forall z max, 0 <= z < max -> base_max_succ_divide max -> decode base (encode base z max) = z. Proof. unfold encode; intros. rewrite encode'_spec, nth_default_out_of_bounds by (omega || auto). apply Z.mod_small; omega. Qed. End BaseSystemProofs. Hint Rewrite @add_length_exact @mul'_length_exact_full @mul_length_exact_full @encode'_length @sub_length : distr_length. Section MultiBaseSystemProofs. Context base0 (base_vector0 : @BaseVector base0) base1 (base_vector1 : @BaseVector base1). Lemma decode_short_initial : forall (us : digits), (firstn (length us) base0 = firstn (length us) base1) -> decode base0 us = decode base1 us. Proof. intros us H. unfold decode, decode'. rewrite (combine_truncate_r us base0), (combine_truncate_r us base1), H. reflexivity. Qed. Lemma mul_rep_two_base : forall (us vs : digits), (length us + length vs <= length base1)%nat -> firstn (length us) base0 = firstn (length us) base1 -> firstn (length vs) base0 = firstn (length vs) base1 -> (decode base0 us) * (decode base0 vs) = decode base1 (mul base1 us vs). Proof. intros. rewrite mul_rep by trivial. apply f_equal2; apply decode_short_initial; assumption. Qed. End MultiBaseSystemProofs.