Require Import List. Require Import Util.ListUtil Util.CaseUtil Util.ZUtil. Require Import ZArith.ZArith ZArith.Zdiv. Require Import Omega NPeano Arith. Local Open Scope Z. Module Type BaseCoefs. (** [BaseCoefs] represent the weights of each digit in a positional number system, with the weight of least significant digit presented first. The following requirements on the base are preconditions for using it with BaseSystem. *) Parameter base : list Z. Axiom base_positive : forall b, In b base -> b > 0. (* nonzero would probably work too... *) Axiom b0_1 : forall x, nth_default x base 0 = 1. Axiom base_good : forall i j, (i+j < length base)%nat -> let b := nth_default 0 base in let r := (b i * b j) / b (i+j)%nat in b i * b j = r * b (i+j)%nat. End BaseCoefs. Module BaseSystem (Import B:BaseCoefs). (** [BaseSystem] implements an constrained positional number system. A wide variety of bases are supported: the base coefficients are not required to be powers of 2, and it is NOT necessarily the case that $b_{i+j} = b_i b_j$. Implementations of addition and multiplication are provided, with focus on near-optimal multiplication performance on non-trivial but small operands: maybe 10 32-bit integers or so. This module does not handle carries automatically: if no restrictions are put on the use of a [BaseSystem], each digit is unbounded. This has nothing to do with modular arithmetic either. *) Definition digits : Type := list Z. Definition accumulate p acc := fst p * snd p + acc. Definition decode' bs u := fold_right accumulate 0 (combine u bs). Definition decode := decode' base. Hint Unfold accumulate. (* Does not carry; z becomes the lowest and only digit. *) Definition encode (z : Z) := z :: nil. Lemma decode'_truncate : forall bs us, decode' bs us = decode' bs (firstn (length bs) us). Proof. unfold decode'; intros; f_equal; apply combine_truncate_l. Qed. Fixpoint add (us vs:digits) : digits := match us,vs with | u::us', v::vs' => u+v :: add us' vs' | _, nil => us | _, _ => vs end. Infix ".+" := add (at level 50). Hint Extern 1 (@eq Z _ _) => ring. Lemma add_rep : forall bs us vs, decode' bs (add us vs) = decode' bs us + decode' bs vs. Proof. unfold decode, decode'; induction bs; destruct us; destruct vs; boring. Qed. Lemma decode_nil : forall bs, decode' bs nil = 0. auto. Qed. Hint Rewrite decode_nil. Lemma decode_base_nil : forall us, decode' nil us = 0. Proof. intros; rewrite decode'_truncate; auto. Qed. Hint Rewrite decode_base_nil. Definition mul_each u := map (Z.mul u). Lemma mul_each_rep : forall bs u vs, decode' bs (mul_each u vs) = u * decode' bs vs. Proof. unfold decode'; induction bs; destruct vs; boring. Qed. Lemma base_eq_1cons: base = 1 :: skipn 1 base. Proof. pose proof (b0_1 0) as H. destruct base; compute in H; try discriminate; boring. Qed. Lemma decode'_cons : forall x1 x2 xs1 xs2, decode' (x1 :: xs1) (x2 :: xs2) = x1 * x2 + decode' xs1 xs2. Proof. unfold decode'; boring. Qed. Hint Rewrite decode'_cons. Lemma decode_cons : forall x us, decode (x :: us) = x + decode (0 :: us). Proof. unfold decode; intros. rewrite base_eq_1cons. autorewrite with core; ring_simplify; auto. Qed. Fixpoint sub (us vs:digits) : digits := match us,vs with | u::us', v::vs' => u-v :: sub us' vs' | _, nil => us | nil, v::vs' => (0-v)::sub nil vs' end. Lemma sub_rep : forall bs us vs, decode' bs (sub us vs) = decode' bs us - decode' bs vs. Proof. induction bs; destruct us; destruct vs; boring. Qed. Lemma encode_rep : forall z, decode (encode z) = z. Proof. pose proof base_eq_1cons. unfold decode, encode; destruct z; boring. Qed. Lemma mul_each_base : forall us bs c, decode' bs (mul_each c us) = decode' (mul_each c bs) us. Proof. induction us; destruct bs; boring. Qed. Hint Rewrite (@nth_default_nil Z). Hint Rewrite (@firstn_nil Z). Hint Rewrite (@skipn_nil Z). Lemma base_app : forall us low high, decode' (low ++ high) us = decode' low (firstn (length low) us) + decode' high (skipn (length low) us). Proof. induction us; destruct low; boring. Qed. Lemma base_mul_app : forall low c us, decode' (low ++ mul_each c low) us = decode' low (firstn (length low) us) + c * decode' low (skipn (length low) us). Proof. intros. rewrite base_app; f_equal. rewrite <- mul_each_rep. rewrite mul_each_base. reflexivity. Qed. Definition crosscoef i j : Z := let b := nth_default 0 base in (b(i) * b(j)) / b(i+j)%nat. Hint Unfold crosscoef. Fixpoint zeros n := match n with O => nil | S n' => 0::zeros n' end. Lemma zeros_rep : forall bs n, decode' bs (zeros n) = 0. induction bs; destruct n; boring. Qed. Lemma length_zeros : forall n, length (zeros n) = n. induction n; boring. Qed. Hint Rewrite length_zeros. Lemma app_zeros_zeros : forall n m, zeros n ++ zeros m = zeros (n + m). Proof. induction n; boring. Qed. Hint Rewrite app_zeros_zeros. Lemma zeros_app0 : forall m, zeros m ++ 0 :: nil = zeros (S m). Proof. induction m; boring. Qed. Hint Rewrite zeros_app0. Lemma rev_zeros : forall n, rev (zeros n) = zeros n. Proof. induction n; boring. Qed. Hint Rewrite rev_zeros. (* mul' is multiplication with the SECOND ARGUMENT REVERSED and OUTPUT REVERSED *) Fixpoint mul_bi' (i:nat) (vsr:digits) := match vsr with | v::vsr' => v * crosscoef i (length vsr') :: mul_bi' i vsr' | nil => nil end. Definition mul_bi (i:nat) (vs:digits) : digits := zeros i ++ rev (mul_bi' i (rev vs)). Hint Unfold nth_default. Lemma decode_single : forall n bs x, decode' bs (zeros n ++ x :: nil) = nth_default 0 bs n * x. Proof. induction n; destruct bs; boring. Qed. Hint Rewrite decode_single. Lemma peel_decode : forall xs ys x y, decode' (x::xs) (y::ys) = x*y + decode' xs ys. Proof. boring. Qed. Hint Rewrite zeros_rep peel_decode. Lemma decode_highzeros : forall xs bs n, decode' bs (xs ++ zeros n) = decode' bs xs. Proof. induction xs; destruct bs; boring. Qed. Lemma mul_bi'_zeros : forall n m, mul_bi' n (zeros m) = zeros m. induction m; boring. Qed. Hint Rewrite mul_bi'_zeros. Lemma nth_error_base_nonzero : forall n x, nth_error base n = Some x -> x <> 0. Proof. eauto using (@nth_error_value_In Z), Zgt0_neq0, base_positive. Qed. Hint Rewrite plus_0_r. Lemma mul_bi_single : forall m n x, (n + m < length base)%nat -> decode (mul_bi n (zeros m ++ x :: nil)) = nth_default 0 base m * x * nth_default 0 base n. Proof. unfold mul_bi, decode. destruct m; simpl; simpl_list; simpl; intros. { pose proof nth_error_base_nonzero. boring; destruct base; nth_tac. rewrite Z_div_mul'; eauto. } { ssimpl_list. autorewrite with core. rewrite app_assoc. autorewrite with core. unfold crosscoef; simpl; ring_simplify. rewrite Nat.add_1_r. rewrite base_good by auto. rewrite Z_div_mult by (apply base_positive; rewrite nth_default_eq; apply nth_In; auto). rewrite <- Z.mul_assoc. rewrite <- Z.mul_comm. rewrite <- Z.mul_assoc. rewrite <- Z.mul_assoc. destruct (Z.eq_dec x 0); subst; try ring. rewrite Z.mul_cancel_l by auto. rewrite <- base_good by auto. ring. } Qed. Lemma set_higher' : forall vs x, vs++x::nil = vs .+ (zeros (length vs) ++ x :: nil). induction vs; boring; f_equal; ring. Qed. Lemma set_higher : forall bs vs x, decode' bs (vs++x::nil) = decode' bs vs + nth_default 0 bs (length vs) * x. Proof. intros. rewrite set_higher'. rewrite add_rep. f_equal. apply decode_single. Qed. Lemma zeros_plus_zeros : forall n, zeros n = zeros n .+ zeros n. induction n; auto. simpl; f_equal; auto. Qed. Lemma mul_bi'_n_nil : forall n, mul_bi' n nil = nil. Proof. unfold mul_bi; auto. Qed. Hint Rewrite mul_bi'_n_nil. Lemma add_nil_l : forall us, nil .+ us = us. induction us; auto. Qed. Hint Rewrite add_nil_l. Lemma add_nil_r : forall us, us .+ nil = us. induction us; auto. Qed. Hint Rewrite add_nil_r. Lemma add_first_terms : forall us vs a b, (a :: us) .+ (b :: vs) = (a + b) :: (us .+ vs). auto. Qed. Hint Rewrite add_first_terms. Lemma mul_bi'_cons : forall n x us, mul_bi' n (x :: us) = x * crosscoef n (length us) :: mul_bi' n us. Proof. unfold mul_bi'; auto. Qed. Lemma add_same_length : forall us vs l, (length us = l) -> (length vs = l) -> length (us .+ vs) = l. Proof. induction us, vs; boring. erewrite (IHus vs (pred l)); boring. Qed. Hint Rewrite app_nil_l. Hint Rewrite app_nil_r. Lemma add_snoc_same_length : forall l us vs a b, (length us = l) -> (length vs = l) -> (us ++ a :: nil) .+ (vs ++ b :: nil) = (us .+ vs) ++ (a + b) :: nil. Proof. induction l, us, vs; boring; discriminate. Qed. Lemma mul_bi'_add : forall us n vs l (Hlus: length us = l) (Hlvs: length vs = l), mul_bi' n (rev (us .+ vs)) = mul_bi' n (rev us) .+ mul_bi' n (rev vs). Proof. (* TODO(adamc): please help prettify this *) induction us using rev_ind; try solve [destruct vs; boring; congruence]. destruct vs using rev_ind; boring; clear IHvs; simpl_list. erewrite (add_snoc_same_length (pred l) us vs _ _); simpl_list. repeat rewrite mul_bi'_cons; rewrite add_first_terms; simpl_list. rewrite (IHus n vs (pred l)). replace (length us) with (pred l). replace (length vs) with (pred l). rewrite (add_same_length us vs (pred l)). f_equal; ring. erewrite length_snoc; eauto. erewrite length_snoc; eauto. erewrite length_snoc; eauto. erewrite length_snoc; eauto. erewrite length_snoc; eauto. erewrite length_snoc; eauto. erewrite length_snoc; eauto. erewrite length_snoc; eauto. Qed. Lemma zeros_cons0 : forall n, 0 :: zeros n = zeros (S n). auto. Qed. Lemma add_leading_zeros : forall n us vs, (zeros n ++ us) .+ (zeros n ++ vs) = zeros n ++ (us .+ vs). Proof. induction n; boring. Qed. Lemma rev_add_rev : forall us vs l, (length us = l) -> (length vs = l) -> (rev us) .+ (rev vs) = rev (us .+ vs). Proof. induction us, vs; boring; try solve [subst; discriminate]. rewrite (add_snoc_same_length (pred l) _ _ _ _) by (subst; simpl_list; omega). rewrite (IHus vs (pred l)) by omega; auto. Qed. Hint Rewrite rev_add_rev. Lemma mul_bi'_length : forall us n, length (mul_bi' n us) = length us. Proof. induction us, n; boring. Qed. Hint Rewrite mul_bi'_length. Lemma add_comm : forall us vs, us .+ vs = vs .+ us. Proof. induction us, vs; boring; f_equal; auto. Qed. Hint Rewrite rev_length. Lemma mul_bi_add_same_length : forall n us vs l, (length us = l) -> (length vs = l) -> mul_bi n (us .+ vs) = mul_bi n us .+ mul_bi n vs. Proof. unfold mul_bi; boring. rewrite add_leading_zeros. erewrite mul_bi'_add; boring. erewrite rev_add_rev; boring. Qed. Lemma add_zeros_same_length : forall us, us .+ (zeros (length us)) = us. Proof. induction us; boring; f_equal; omega. Qed. Hint Rewrite add_zeros_same_length. Hint Rewrite minus_diag. Lemma add_trailing_zeros : forall us vs, (length us >= length vs)%nat -> us .+ vs = us .+ (vs ++ (zeros (length us - length vs))). Proof. induction us, vs; boring; f_equal; boring. Qed. Lemma length_add_ge : forall us vs, (length us >= length vs)%nat -> (length (us .+ vs) <= length us)%nat. Proof. intros. rewrite add_trailing_zeros by trivial. erewrite add_same_length by (pose proof app_length; boring); omega. Qed. Lemma add_length_le_max : forall us vs, (length (us .+ vs) <= max (length us) (length vs))%nat. Proof. intros; case_max; (rewrite add_comm; apply length_add_ge; omega) || (apply length_add_ge; omega) . Qed. Lemma sub_nil_length: forall us : digits, length (sub nil us) = length us. Proof. induction us; boring. Qed. Lemma sub_length_le_max : forall us vs, (length (sub us vs) <= max (length us) (length vs))%nat. Proof. induction us, vs; boring. rewrite sub_nil_length; auto. Qed. Lemma mul_bi_length : forall us n, length (mul_bi n us) = (length us + n)%nat. Proof. pose proof mul_bi'_length; unfold mul_bi. destruct us; repeat progress (simpl_list; boring). Qed. Hint Rewrite mul_bi_length. Lemma mul_bi_trailing_zeros : forall m n us, mul_bi n us ++ zeros m = mul_bi n (us ++ zeros m). Proof. unfold mul_bi. induction m; intros; try solve [boring]. rewrite <- zeros_app0. rewrite app_assoc. repeat progress (boring; rewrite rev_app_distr). Qed. Lemma mul_bi_add_longer : forall n us vs, (length us >= length vs)%nat -> mul_bi n (us .+ vs) = mul_bi n us .+ mul_bi n vs. Proof. boring. rewrite add_trailing_zeros by auto. rewrite (add_trailing_zeros (mul_bi n us) (mul_bi n vs)) by (repeat (rewrite mul_bi_length); omega). erewrite mul_bi_add_same_length by (eauto; simpl_list; rewrite length_zeros; omega). rewrite mul_bi_trailing_zeros. repeat (f_equal; boring). Qed. Lemma mul_bi_add : forall n us vs, mul_bi n (us .+ vs) = (mul_bi n us) .+ (mul_bi n vs). Proof. intros; pose proof mul_bi_add_longer. destruct (le_ge_dec (length us) (length vs)). { replace (mul_bi n us .+ mul_bi n vs) with (mul_bi n vs .+ mul_bi n us) by (apply add_comm). replace (us .+ vs) with (vs .+ us) by (apply add_comm). boring. } { boring. } Qed. Lemma mul_bi_rep : forall i vs, (i + length vs < length base)%nat -> decode (mul_bi i vs) = decode vs * nth_default 0 base i. Proof. unfold decode. induction vs using rev_ind; intros; try solve [unfold mul_bi; boring]. assert (i + length vs < length base)%nat by (rewrite app_length in *; boring). rewrite set_higher. ring_simplify. rewrite <- IHvs by auto; clear IHvs. rewrite <- mul_bi_single by auto. rewrite <- add_rep. rewrite <- mul_bi_add. rewrite set_higher'. auto. Qed. (* mul' is multiplication with the FIRST ARGUMENT REVERSED *) Fixpoint mul' (usr vs:digits) : digits := match usr with | u::usr' => mul_each u (mul_bi (length usr') vs) .+ mul' usr' vs | _ => nil end. Definition mul us := mul' (rev us). Lemma mul'_rep : forall us vs, (length us + length vs <= length base)%nat -> decode (mul' (rev us) vs) = decode us * decode vs. Proof. unfold decode. induction us using rev_ind; boring. assert (length us + length vs < length base)%nat by (rewrite app_length in *; boring). ssimpl_list. rewrite add_rep. boring. rewrite set_higher. rewrite mul_each_rep. rewrite mul_bi_rep by auto. unfold decode; ring. Qed. Lemma mul_rep : forall us vs, (length us + length vs <= length base)%nat -> decode (mul us vs) = decode us * decode vs. Proof. exact mul'_rep. Qed. Lemma mul'_length: forall us vs, (length (mul' us vs) <= length us + length vs)%nat. Proof. pose proof add_length_le_max. induction us; boring. unfold mul_each. simpl_list; case_max; boring; omega. Qed. Lemma mul_length: forall us vs, (length (mul us vs) <= length us + length vs)%nat. Proof. intros; unfold mul. rewrite mul'_length. rewrite rev_length; omega. Qed. (* Print Assumptions mul_rep. *) End BaseSystem. Module Type PolynomialBaseParams. Parameter b1 : positive. (* the value at which the polynomial is evaluated *) Parameter baseLength : nat. (* 1 + degree of the polynomial *) Axiom baseLengthNonzero : NPeano.ltb 0 baseLength = true. End PolynomialBaseParams. Module PolynomialBaseCoefs (Import P:PolynomialBaseParams) <: BaseCoefs. (** PolynomialBaseCoeffs generates base vectors for [BaseSystem] using the extra assumption that $b_{i+j} = b_j b_j$. *) Definition bi i := (Zpos b1)^(Z.of_nat i). Definition base := map bi (seq 0 baseLength). Lemma b0_1 : forall x, nth_default x base 0 = 1. unfold base, bi, nth_default. case_eq baseLength; intros. { assert ((0 < baseLength)%nat) by (rewrite <-NPeano.ltb_lt; apply baseLengthNonzero). subst; omega. } auto. Qed. Lemma base_positive : forall b, In b base -> b > 0. Proof. unfold base. intros until 0; intro H. rewrite in_map_iff in *. destruct H; destruct H. subst. apply pos_pow_nat_pos. Qed. Lemma base_defn : forall i, (i < length base)%nat -> nth_default 0 base i = bi i. Proof. unfold base, nth_default; nth_tac. Qed. Lemma base_succ : forall i, ((S i) < length base)%nat -> let b := nth_default 0 base in let r := (b (S i) / b i) in b (S i) = r * b i. Proof. intros; subst b; subst r. repeat rewrite base_defn in * by omega. unfold bi. replace (Z.pos b1 ^ Z.of_nat (S i)) with (Z.pos b1 * (Z.pos b1 ^ Z.of_nat i)) by (rewrite Nat2Z.inj_succ; rewrite <- Z.pow_succ_r; intuition). replace (Z.pos b1 * Z.pos b1 ^ Z.of_nat i / Z.pos b1 ^ Z.of_nat i) with (Z.pos b1); auto. rewrite Z_div_mult_full; auto. apply Z.pow_nonzero; intuition. pose proof (Zgt_pos_0 b1); omega. Qed. Lemma base_good: forall i j, (i + j < length base)%nat -> let b := nth_default 0 base in let r := (b i * b j) / b (i+j)%nat in b i * b j = r * b (i+j)%nat. Proof. unfold base, nth_default; nth_tac. clear. unfold bi. rewrite Nat2Z.inj_add, Zpower_exp by (replace 0 with (Z.of_nat 0) by auto; rewrite <- Nat2Z.inj_ge; omega). rewrite Z_div_same_full; try ring. rewrite <- Z.neq_mul_0. split; apply Z.pow_nonzero; try apply Zle_0_nat; try solve [intro H; inversion H]. Qed. End PolynomialBaseCoefs. Module BasePoly2Degree32Params <: PolynomialBaseParams. Definition b1 := 2%positive. Definition baseLength := 32%nat. Lemma baseLengthNonzero : NPeano.ltb 0 baseLength = true. compute; reflexivity. Qed. End BasePoly2Degree32Params. Import ListNotations. Module BaseSystemExample. Module BasePoly2Degree32Coefs := PolynomialBaseCoefs BasePoly2Degree32Params. Module BasePoly2Degree32 := BaseSystem BasePoly2Degree32Coefs. Import BasePoly2Degree32. Example three_times_two : mul [1;1;0] [0;1;0] = [0;1;1;0;0]. Proof. reflexivity. Qed. (* python -c "e = lambda x: '['+''.join(reversed(bin(x)[2:])).replace('1','1;').replace('0','0;')[:-1]+']'; print(e(19259)); print(e(41781))" *) Definition a := [1;1;0;1;1;1;0;0;1;1;0;1;0;0;1]. Definition b := [1;0;1;0;1;1;0;0;1;1;0;0;0;1;0;1]. Example da : decode a = 19259. Proof. reflexivity. Qed. Example db : decode b = 41781. Proof. reflexivity. Qed. Example encoded_ab : mul a b =[1;1;1;2;2;4;2;2;4;5;3;3;3;6;4;2;5;3;4;3;2;1;2;2;2;0;1;1;0;1]. Proof. reflexivity. Qed. Example dab : decode (mul a b) = 804660279. Proof. reflexivity. Qed. End BaseSystemExample.