Require Import Coq.ZArith.ZArith. Require Import Coq.Lists.List. Local Open Scope Z_scope. Require Import Crypto.Arithmetic.Core. Require Import Crypto.Util.LetIn Crypto.Util.CPSUtil. (* Defines bignum multiplication using a two-output multiply operation. *) Module B. Module Associational. Section Associational. Context {mul_split_cps : forall {T}, Z -> Z -> Z -> (Z * Z -> T) -> T} (* first argument is where to split output; [mul_split s x y] gives ((x * y) mod s, (x * y) / s) *) {mul_split_cps_id : forall {T} s x y f, @mul_split_cps T s x y f = f (@mul_split_cps _ s x y id)} {mul_split_mod : forall s x y, fst (mul_split_cps s x y id) = (x * y) mod s} {mul_split_div : forall s x y, snd (mul_split_cps s x y id) = (x * y) / s} . Local Lemma mul_split_cps_correct {T} s x y f : @mul_split_cps T s x y f = f ((x * y) mod s, (x * y) / s). Proof. now rewrite mul_split_cps_id, <- mul_split_mod, <- mul_split_div, <- surjective_pairing. Qed. Hint Rewrite @mul_split_cps_correct : uncps. Definition sat_multerm_cps s (t t' : B.limb) {T} (f:list B.limb ->T) := mul_split_cps _ s (snd t) (snd t') (fun xy => dlet xy := xy in f ((fst t * fst t', fst xy) :: (fst t * fst t' * s, snd xy) :: nil)). Definition sat_multerm s t t' := sat_multerm_cps s t t' id. Lemma sat_multerm_id s t t' T f : @sat_multerm_cps s t t' T f = f (sat_multerm s t t'). Proof. unfold sat_multerm, sat_multerm_cps; etransitivity; rewrite mul_split_cps_id; reflexivity. Qed. Hint Opaque sat_multerm : uncps. Hint Rewrite sat_multerm_id : uncps. Definition sat_mul_cps s (p q : list B.limb) {T} (f : list B.limb -> T) := flat_map_cps (fun t => @flat_map_cps _ _ (sat_multerm_cps s t) q) p f. Definition sat_mul s p q := sat_mul_cps s p q id. Lemma sat_mul_id s p q T f : @sat_mul_cps s p q T f = f (sat_mul s p q). Proof. cbv [sat_mul sat_mul_cps]. autorewrite with uncps. reflexivity. Qed. Hint Opaque sat_mul : uncps. Hint Rewrite sat_mul_id : uncps. Lemma eval_map_sat_multerm s a q (s_nonzero:s<>0): B.Associational.eval (flat_map (sat_multerm s a) q) = fst a * snd a * B.Associational.eval q. Proof. cbv [sat_multerm sat_multerm_cps Let_In]; induction q; repeat match goal with | _ => progress autorewrite with uncps push_id cancel_pair push_basesystem_eval in * | _ => progress simpl flat_map | _ => progress unfold id in * | _ => progress rewrite ?IHq, ?mul_split_mod, ?mul_split_div | _ => rewrite Z.mod_eq by assumption | _ => rewrite B.Associational.eval_nil | _ => progress change (Z * Z)%type with B.limb | _ => ring_simplify; omega end. Qed. Hint Rewrite eval_map_sat_multerm using (omega || assumption) : push_basesystem_eval. Lemma eval_sat_mul s p q (s_nonzero:s<>0): B.Associational.eval (sat_mul s p q) = B.Associational.eval p * B.Associational.eval q. Proof. cbv [sat_mul sat_mul_cps]; induction p; [reflexivity|]. repeat match goal with | _ => progress (autorewrite with uncps push_id push_basesystem_eval in * ) | _ => progress simpl flat_map | _ => rewrite IHp | _ => progress change (fun x => sat_multerm_cps s a x id) with (sat_multerm s a) | _ => ring_simplify; omega end. Qed. Hint Rewrite eval_sat_mul : push_basesystem_eval. End Associational. End Associational. End B. Hint Opaque B.Associational.sat_mul B.Associational.sat_multerm : uncps. Hint Rewrite @B.Associational.sat_mul_id @B.Associational.sat_multerm_id using (assumption || (intros; autorewrite with uncps; reflexivity)) : uncps. Hint Rewrite @B.Associational.eval_sat_mul @B.Associational.eval_map_sat_multerm using (omega || assumption) : push_basesystem_eval. Hint Unfold B.Associational.sat_multerm_cps B.Associational.sat_multerm B.Associational.sat_mul_cps B.Associational.sat_mul : basesystem_partial_evaluation_unfolder. Ltac basesystem_partial_evaluation_unfolder t := let t := (eval cbv delta [B.Associational.sat_multerm_cps B.Associational.sat_multerm B.Associational.sat_mul_cps B.Associational.sat_mul] in t) in let t := Arithmetic.Core.basesystem_partial_evaluation_unfolder t in t. Ltac Arithmetic.Core.basesystem_partial_evaluation_default_unfolder t ::= basesystem_partial_evaluation_unfolder t.