(*** Word-By-Word Montgomery Multiplication Proofs *) Require Import Coq.Arith.Arith. Require Import Coq.ZArith.BinInt Coq.ZArith.ZArith Coq.ZArith.Zdiv Coq.micromega.Lia. Require Import Crypto.Util.LetIn. Require Import Crypto.Util.Prod. Require Import Crypto.Util.NatUtil. Require Import Crypto.Arithmetic.ModularArithmeticTheorems Crypto.Spec.ModularArithmetic. Require Import Crypto.Arithmetic.MontgomeryReduction.WordByWord.Abstract.Dependent.Definition. Require Import Crypto.Algebra.Ring. Require Import Crypto.Util.ZUtil.MulSplit. Require Import Crypto.Util.ZUtil.Div. Require Import Crypto.Util.ZUtil.EquivModulo. Require Import Crypto.Util.ZUtil.Modulo. Require Import Crypto.Util.ZUtil.Modulo.PullPush. Require Import Crypto.Util.ZUtil.Tactics.PeelLe. Require Import Crypto.Util.ZUtil.Tactics.ZeroBounds. Require Import Crypto.Util.ZUtil.Tactics.RewriteModSmall. Require Import Crypto.Util.ZUtil.Tactics.PullPush.Modulo. Require Import Crypto.Util.ZUtil.Tactics.LtbToLt. Require Import Crypto.Util.Sigma. Require Import Crypto.Util.Tactics.SetEvars. Require Import Crypto.Util.Tactics.SubstEvars. Require Import Crypto.Util.Tactics.DestructHead. Require Import Crypto.Util.Tactics.BreakMatch. Local Open Scope Z_scope. Section WordByWordMontgomery. Context {T : nat -> Type} {eval : forall {n}, T n -> Z} {zero : forall {n}, T n} {divmod : forall {n}, T (S n) -> T n * Z} (* returns lowest limb and all-but-lowest-limb *) {r : positive} {r_big : r > 1} {R : positive} {R_numlimbs : nat} {R_correct : R = r^Z.of_nat R_numlimbs :> Z} {small : forall {n}, T n -> Prop} {eval_zero : forall n, eval (@zero n) = 0} {small_zero : forall n, small (@zero n)} {eval_div : forall n v, small v -> eval (fst (@divmod n v)) = eval v / r} {eval_mod : forall n v, small v -> snd (@divmod n v) = eval v mod r} {small_div : forall n v, small v -> small (fst (@divmod n v))} {scmul : forall {n}, Z -> T n -> T (S n)} (* uses double-output multiply *) {eval_scmul: forall n a v, small v -> 0 <= a < r -> 0 <= eval v < R -> eval (@scmul n a v) = a * eval v} {small_scmul : forall n a v, small v -> 0 <= a < r -> 0 <= eval v < R -> small (@scmul n a v)} {addT : forall {n}, T n -> T n -> T (S n)} (* joins carry *) {eval_addT : forall n a b, eval (@addT n a b) = eval a + eval b} {small_addT : forall n a b, small a -> small b -> small (@addT n a b)} {addT' : forall {n}, T (S n) -> T n -> T (S (S n))} (* joins carry *) {eval_addT' : forall n a b, eval (@addT' n a b) = eval a + eval b} {small_addT' : forall n a b, small a -> small b -> small (@addT' n a b)} {drop_high : T (S (S R_numlimbs)) -> T (S R_numlimbs)} (* drops the highest limb *) {eval_drop_high : forall v, small v -> eval (drop_high v) = eval v mod (r * r^Z.of_nat R_numlimbs)} {small_drop_high : forall v, small v -> small (drop_high v)} (N : T R_numlimbs) (Npos : positive) (Npos_correct: eval N = Z.pos Npos) (small_N : small N) (N_lt_R : eval N < R) {conditional_sub : T (S R_numlimbs) -> T R_numlimbs} (* computes [arg - N] if [N <= arg], and drops high bit *) {eval_conditional_sub : forall v, small v -> 0 <= eval v < eval N + R -> eval (conditional_sub v) = eval v + if eval N <=? eval v then -eval N else 0} {small_conditional_sub : forall v, small v -> 0 <= eval v < eval N + R -> small (conditional_sub v)} {sub_then_maybe_add : T R_numlimbs -> T R_numlimbs -> T R_numlimbs} (* computes [a - b + if (a - b) small b -> 0 <= eval a < eval N -> 0 <= eval b < eval N -> eval (sub_then_maybe_add a b) = eval a - eval b + if eval a - eval b destruct H end ]. Hint Rewrite eval_zero eval_div eval_mod eval_addT eval_addT' eval_scmul eval_drop_high eval_conditional_sub eval_sub_then_maybe_add using (repeat autounfold with word_by_word_montgomery; t_small) : push_eval. Local Arguments eval {_} _. Local Arguments small {_} _. Local Arguments divmod {_} _. (* Recurse for a as many iterations as A has limbs, varying A := A, S := 0, r, bounds *) Section Iteration. Context (pred_A_numlimbs : nat) (A : T (S pred_A_numlimbs)) (S : T (S R_numlimbs)) (small_A : small A) (small_S : small S) (S_nonneg : 0 <= eval S). (* Given A, B < R, we want to compute A * B / R mod N. R = bound 0 * ... * bound (n-1) *) Local Coercion eval : T >-> Z. Local Notation a := (@WordByWord.Abstract.Dependent.Definition.a T (@divmod) pred_A_numlimbs A). Local Notation A' := (@WordByWord.Abstract.Dependent.Definition.A' T (@divmod) pred_A_numlimbs A). Local Notation S1 := (@WordByWord.Abstract.Dependent.Definition.S1 T (@divmod) R_numlimbs scmul addT pred_A_numlimbs B A S). Local Notation s := (@WordByWord.Abstract.Dependent.Definition.s T (@divmod) R_numlimbs scmul addT pred_A_numlimbs B A S). Local Notation q := (@WordByWord.Abstract.Dependent.Definition.q T (@divmod) r R_numlimbs scmul addT pred_A_numlimbs B k A S). Local Notation S2 := (@WordByWord.Abstract.Dependent.Definition.S2 T (@divmod) r R_numlimbs scmul addT addT' N pred_A_numlimbs B k A S). Local Notation S3 := (@WordByWord.Abstract.Dependent.Definition.S3 T (@divmod) r R_numlimbs scmul addT addT' N pred_A_numlimbs B k A S). Local Notation S4 := (@WordByWord.Abstract.Dependent.Definition.S4 T (@divmod) r R_numlimbs scmul addT addT' drop_high N pred_A_numlimbs B k A S). Lemma S3_bound : eval S < eval N + eval B -> eval S3 < eval N + eval B. Proof. assert (Hmod : forall a b, 0 < b -> a mod b <= b - 1) by (intros x y; pose proof (Z_mod_lt x y); omega). intro HS. unfold S3, S2, S1. autorewrite with push_eval; []. eapply Z.le_lt_trans. { transitivity ((N+B-1 + (r-1)*B + (r-1)*N) / r); [ | set_evars; ring_simplify_subterms; subst_evars; reflexivity ]. Z.peel_le; repeat apply Z.add_le_mono; repeat apply Z.mul_le_mono_nonneg; try lia; repeat autounfold with word_by_word_montgomery; rewrite ?Z.mul_split_mod; autorewrite with push_eval; try Z.zero_bounds; auto with lia. } rewrite (Z.mul_comm _ r), <- Z.add_sub_assoc, <- Z.add_opp_r, !Z.div_add_l' by lia. autorewrite with zsimplify. simpl; omega. Qed. Lemma small_A' : small A'. Proof. repeat autounfold with word_by_word_montgomery; auto. Qed. Lemma small_S3 : small S3. Proof. repeat autounfold with word_by_word_montgomery; t_small. Qed. Lemma S3_nonneg : 0 <= eval S3. Proof. repeat autounfold with word_by_word_montgomery; rewrite ?Z.mul_split_mod; autorewrite with push_eval; []. rewrite ?Npos_correct; Z.zero_bounds; lia. Qed. Lemma S4_nonneg : 0 <= eval S4. Proof. unfold S4; rewrite eval_drop_high by apply small_S3; Z.zero_bounds. Qed. Lemma S4_bound : eval S < eval N + eval B -> eval S4 < eval N + eval B. Proof. intro H; pose proof (S3_bound H); pose proof S3_nonneg. unfold S4. rewrite eval_drop_high by apply small_S3. rewrite Z.mod_small by nia. assumption. Qed. Lemma small_S4 : small S4. Proof. repeat autounfold with word_by_word_montgomery; t_small. Qed. Lemma S1_eq : eval S1 = S + a*B. Proof. cbv [S1 a A']. repeat autorewrite with push_eval. reflexivity. Qed. Lemma S2_mod_N : (eval S2) mod N = (S + a*B) mod N. Proof. cbv [S2]; autorewrite with push_eval zsimplify. rewrite S1_eq. reflexivity. Qed. Lemma S2_mod_r : S2 mod r = 0. Proof. cbv [S2 q s]; autorewrite with push_eval. assert (r > 0) by lia. assert (Hr : (-(1 mod r)) mod r = r - 1 /\ (-(1)) mod r = r - 1). { destruct (Z.eq_dec r 1) as [H'|H']. { rewrite H'; split; reflexivity. } { rewrite !Z_mod_nz_opp_full; rewrite ?Z.mod_mod; Z.rewrite_mod_small; [ split; reflexivity | omega.. ]. } } autorewrite with pull_Zmod. replace 0 with (0 mod r) by apply Zmod_0_l. eapply F.eq_of_Z_iff. rewrite Z.mul_split_mod. repeat rewrite ?F.of_Z_add, ?F.of_Z_mul, <-?F.of_Z_mod. rewrite <-Algebra.Hierarchy.associative. replace ((F.of_Z r k * F.of_Z r (eval N))%F) with (F.opp (m:=r) F.one). { cbv [F.of_Z F.add]; simpl. apply path_sig_hprop; [ intro; exact HProp.allpath_hprop | ]. simpl. rewrite (proj1 Hr), Z.mul_sub_distr_l. push_Zmod; pull_Zmod. autorewrite with zsimplify; reflexivity. } { rewrite <- F.of_Z_mul. rewrite F.of_Z_mod. rewrite k_correct. cbv [F.of_Z F.add F.opp F.one]; simpl. change (-(1)) with (-1) in *. apply path_sig_hprop; [ intro; exact HProp.allpath_hprop | ]; simpl. rewrite (proj1 Hr), (proj2 Hr); Z.rewrite_mod_small; reflexivity. } Qed. Lemma S3_mod_N : S3 mod N = (S + a*B)*ri mod N. Proof. cbv [S3]; autorewrite with push_eval cancel_pair. pose proof fun a => Z.div_to_inv_modulo N a r ri eq_refl ri_correct as HH; cbv [Z.equiv_modulo] in HH; rewrite HH; clear HH. etransitivity; [rewrite (fun a => Z.mul_mod_l a ri N)| rewrite (fun a => Z.mul_mod_l a ri N); reflexivity]. rewrite <-S2_mod_N; repeat (f_equal; []); autorewrite with push_eval. autorewrite with push_Zmod; rewrite S2_mod_r; autorewrite with zsimplify. reflexivity. Qed. Lemma S4_mod_N (Hbound : eval S < eval N + eval B) : S4 mod N = (S + a*B)*ri mod N. Proof. pose proof (S3_bound Hbound); pose proof S3_nonneg. unfold S4; autorewrite with push_eval. rewrite (Z.mod_small _ (r * _)) by nia. apply S3_mod_N. Qed. End Iteration. Local Notation redc_body := (@redc_body T (@divmod) r R_numlimbs scmul addT addT' drop_high N B k). Local Notation redc_loop := (@redc_loop T (@divmod) r R_numlimbs scmul addT addT' drop_high N B k). Local Notation pre_redc A := (@pre_redc T zero (@divmod) r R_numlimbs scmul addT addT' drop_high N _ A B k). Local Notation redc A := (@redc T zero (@divmod) r R_numlimbs scmul addT addT' drop_high conditional_sub N _ A B k). Section body. Context (pred_A_numlimbs : nat) (A_S : T (S pred_A_numlimbs) * T (S R_numlimbs)). Let A:=fst A_S. Let S:=snd A_S. Let A_a:=divmod A. Let a:=snd A_a. Context (small_A : small A) (small_S : small S) (S_bound : 0 <= eval S < eval N + eval B). Lemma small_fst_redc_body : small (fst (redc_body A_S)). Proof. destruct A_S; apply small_A'; assumption. Qed. Lemma small_snd_redc_body : small (snd (redc_body A_S)). Proof. destruct A_S; unfold redc_body; apply small_S4; assumption. Qed. Lemma snd_redc_body_nonneg : 0 <= eval (snd (redc_body A_S)). Proof. destruct A_S; apply S4_nonneg; assumption. Qed. Lemma snd_redc_body_mod_N : (eval (snd (redc_body A_S))) mod (eval N) = (eval S + a*eval B)*ri mod (eval N). Proof. destruct A_S; apply S4_mod_N; auto; omega. Qed. Lemma fst_redc_body : (eval (fst (redc_body A_S))) = eval (fst A_S) / r. Proof. destruct A_S; simpl; repeat autounfold with word_by_word_montgomery; simpl. autorewrite with push_eval. reflexivity. Qed. Lemma fst_redc_body_mod_N : (eval (fst (redc_body A_S))) mod (eval N) = ((eval (fst A_S) - a)*ri) mod (eval N). Proof. rewrite fst_redc_body. etransitivity; [ eapply Z.div_to_inv_modulo; try eassumption; lia | ]. unfold a, A_a, A. autorewrite with push_eval. reflexivity. Qed. Lemma redc_body_bound : eval S < eval N + eval B -> eval (snd (redc_body A_S)) < eval N + eval B. Proof. destruct A_S; apply S4_bound; unfold S in *; cbn [snd] in *; try assumption; try omega. Qed. End body. Local Arguments Z.pow !_ !_. Local Arguments Z.of_nat !_. Local Ltac induction_loop count IHcount := induction count as [|count IHcount]; intros; cbn [redc_loop] in *; [ | (*rewrite redc_loop_comm_body in * *) ]. Lemma redc_loop_good count A_S (Hsmall : small (fst A_S) /\ small (snd A_S)) (Hbound : 0 <= eval (snd A_S) < eval N + eval B) : (small (fst (redc_loop count A_S)) /\ small (snd (redc_loop count A_S))) /\ 0 <= eval (snd (redc_loop count A_S)) < eval N + eval B. Proof. induction_loop count IHcount; auto; []. change (id (0 <= eval B < R)) in B_bounds (* don't let [destruct_head'_and] loop *). destruct_head'_and. repeat first [ apply conj | apply small_fst_redc_body | apply small_snd_redc_body | apply redc_body_bound | apply snd_redc_body_nonneg | apply IHcount | solve [ auto ] ]. Qed. Lemma small_redc_loop count A_S (Hsmall : small (fst A_S) /\ small (snd A_S)) (Hbound : 0 <= eval (snd A_S) < eval N + eval B) : small (fst (redc_loop count A_S)) /\ small (snd (redc_loop count A_S)). Proof. apply redc_loop_good; assumption. Qed. Lemma redc_loop_bound count A_S (Hsmall : small (fst A_S) /\ small (snd A_S)) (Hbound : 0 <= eval (snd A_S) < eval N + eval B) : 0 <= eval (snd (redc_loop count A_S)) < eval N + eval B. Proof. apply redc_loop_good; assumption. Qed. Local Ltac handle_IH_small := repeat first [ apply redc_loop_good | apply small_fst_redc_body | apply small_snd_redc_body | apply redc_body_bound | apply snd_redc_body_nonneg | apply conj | progress cbn [fst snd] | progress destruct_head' and | solve [ auto ] ]. Lemma fst_redc_loop count A_S (Hsmall : small (fst A_S) /\ small (snd A_S)) (Hbound : 0 <= eval (snd A_S) < eval N + eval B) : eval (fst (redc_loop count A_S)) = eval (fst A_S) / r^(Z.of_nat count). Proof. induction_loop count IHcount. { simpl; autorewrite with zsimplify; reflexivity. } { rewrite IHcount, fst_redc_body by handle_IH_small. change (1 + R_numlimbs)%nat with (S R_numlimbs) in *. rewrite Zdiv_Zdiv by Z.zero_bounds. rewrite <- (Z.pow_1_r r) at 1. rewrite <- Z.pow_add_r by lia. replace (1 + Z.of_nat count) with (Z.of_nat (S count)) by lia. reflexivity. } Qed. Lemma fst_redc_loop_mod_N count A_S (Hsmall : small (fst A_S) /\ small (snd A_S)) (Hbound : 0 <= eval (snd A_S) < eval N + eval B) : eval (fst (redc_loop count A_S)) mod (eval N) = (eval (fst A_S) - eval (fst A_S) mod r^Z.of_nat count) * ri^(Z.of_nat count) mod (eval N). Proof. rewrite fst_redc_loop by assumption. destruct count. { simpl; autorewrite with zsimplify; reflexivity. } { etransitivity; [ eapply Z.div_to_inv_modulo; try solve [ eassumption | apply Z.lt_gt, Z.pow_pos_nonneg; lia ] | ]. { erewrite <- Z.pow_mul_l, <- Z.pow_1_l. { apply Z.pow_mod_Proper; [ eassumption | reflexivity ]. } { lia. } } reflexivity. } Qed. Local Arguments Z.pow : simpl never. Lemma snd_redc_loop_mod_N count A_S (Hsmall : small (fst A_S) /\ small (snd A_S)) (Hbound : 0 <= eval (snd A_S) < eval N + eval B) : (eval (snd (redc_loop count A_S))) mod (eval N) = ((eval (snd A_S) + (eval (fst A_S) mod r^(Z.of_nat count))*eval B)*ri^(Z.of_nat count)) mod (eval N). Proof. induction_loop count IHcount. { simpl; autorewrite with zsimplify; reflexivity. } { rewrite IHcount by handle_IH_small. push_Zmod; rewrite snd_redc_body_mod_N, fst_redc_body by handle_IH_small; pull_Zmod. autorewrite with push_eval; []. match goal with | [ |- ?x mod ?N = ?y mod ?N ] => change (Z.equiv_modulo N x y) end. destruct A_S as [A S]. cbn [fst snd]. change (Z.pos (Pos.of_succ_nat ?n)) with (Z.of_nat (Datatypes.S n)). rewrite !Z.mul_add_distr_r. rewrite <- !Z.mul_assoc. replace (ri * ri^(Z.of_nat count)) with (ri^(Z.of_nat (Datatypes.S count))) by (change (Datatypes.S count) with (1 + count)%nat; autorewrite with push_Zof_nat; rewrite Z.pow_add_r by lia; simpl Z.succ; rewrite Z.pow_1_r; nia). rewrite <- !Z.add_assoc. apply Z.add_mod_Proper; [ reflexivity | ]. unfold Z.equiv_modulo; push_Zmod; rewrite (Z.mul_mod_l (_ mod r) _ (eval N)). rewrite Z.mod_pull_div by auto with zarith lia. push_Zmod. erewrite Z.div_to_inv_modulo; [ | apply Z.lt_gt; lia | eassumption ]. pull_Zmod. match goal with | [ |- ?x mod ?N = ?y mod ?N ] => change (Z.equiv_modulo N x y) end. repeat first [ rewrite <- !Z.pow_succ_r, <- !Nat2Z.inj_succ by lia | rewrite (Z.mul_comm _ ri) | rewrite (Z.mul_assoc _ ri _) | rewrite (Z.mul_comm _ (ri^_)) | rewrite (Z.mul_assoc _ (ri^_) _) ]. repeat first [ rewrite <- Z.mul_assoc | rewrite <- Z.mul_add_distr_l | rewrite (Z.mul_comm _ (eval B)) | rewrite !Nat2Z.inj_succ, !Z.pow_succ_r by lia; rewrite <- Znumtheory.Zmod_div_mod by (apply Z.divide_factor_r || Z.zero_bounds) | rewrite Zplus_minus | rewrite (Z.mul_comm r (r^_)) | reflexivity ]. } Qed. Lemma pre_redc_bound A_numlimbs (A : T A_numlimbs) (small_A : small A) : 0 <= eval (pre_redc A) < eval N + eval B. Proof. unfold pre_redc. apply redc_loop_good; simpl; autorewrite with push_eval; rewrite ?Npos_correct; auto; lia. Qed. Lemma small_pre_redc A_numlimbs (A : T A_numlimbs) (small_A : small A) : small (pre_redc A). Proof. unfold pre_redc. apply redc_loop_good; simpl; autorewrite with push_eval; rewrite ?Npos_correct; auto; lia. Qed. Lemma pre_redc_mod_N A_numlimbs (A : T A_numlimbs) (small_A : small A) (A_bound : 0 <= eval A < r ^ Z.of_nat A_numlimbs) : (eval (pre_redc A)) mod (eval N) = (eval A * eval B * ri^(Z.of_nat A_numlimbs)) mod (eval N). Proof. unfold pre_redc. rewrite snd_redc_loop_mod_N; cbn [fst snd]; autorewrite with push_eval zsimplify; [ | rewrite ?Npos_correct; auto; lia.. ]. Z.rewrite_mod_small. reflexivity. Qed. Lemma redc_mod_N A_numlimbs (A : T A_numlimbs) (small_A : small A) (A_bound : 0 <= eval A < r ^ Z.of_nat A_numlimbs) : (eval (redc A)) mod (eval N) = (eval A * eval B * ri^(Z.of_nat A_numlimbs)) mod (eval N). Proof. pose proof (@small_pre_redc _ A small_A). pose proof (@pre_redc_bound _ A small_A). unfold redc. autorewrite with push_eval; []. break_innermost_match; try rewrite Z.add_opp_r, Zminus_mod, Z_mod_same_full; autorewrite with zsimplify_fast; apply pre_redc_mod_N; auto. Qed. Lemma redc_bound_tight A_numlimbs (A : T A_numlimbs) (small_A : small A) : 0 <= eval (redc A) < eval N + eval B + if eval N <=? eval (pre_redc A) then -eval N else 0. Proof. pose proof (@small_pre_redc _ A small_A). pose proof (@pre_redc_bound _ A small_A). unfold redc. rewrite eval_conditional_sub by t_small. break_innermost_match; Z.ltb_to_lt; omega. Qed. Lemma redc_bound_N A_numlimbs (A : T A_numlimbs) (small_A : small A) : eval B < eval N -> 0 <= eval (redc A) < eval N. Proof. pose proof (@small_pre_redc _ A small_A). pose proof (@pre_redc_bound _ A small_A). unfold redc. rewrite eval_conditional_sub by t_small. break_innermost_match; Z.ltb_to_lt; omega. Qed. Lemma redc_bound A_numlimbs (A : T A_numlimbs) (small_A : small A) (A_bound : 0 <= eval A < r ^ Z.of_nat A_numlimbs) : 0 <= eval (redc A) < R. Proof. pose proof (@small_pre_redc _ A small_A). pose proof (@pre_redc_bound _ A small_A). unfold redc. rewrite eval_conditional_sub by t_small. break_innermost_match; Z.ltb_to_lt; try omega. Qed. Lemma small_redc A_numlimbs (A : T A_numlimbs) (small_A : small A) (A_bound : 0 <= eval A < r ^ Z.of_nat A_numlimbs) : small (redc A). Proof. pose proof (@small_pre_redc _ A small_A). pose proof (@pre_redc_bound _ A small_A). unfold redc. apply small_conditional_sub; [ apply small_pre_redc | .. ]; auto; omega. Qed. Local Notation add := (@add T R_numlimbs addT conditional_sub). Local Notation sub := (@sub T R_numlimbs sub_then_maybe_add). Local Notation opp := (@opp T (@zero) R_numlimbs sub_then_maybe_add). Section add_sub. Context (Av Bv : T R_numlimbs) (small_Av : small Av) (small_Bv : small Bv) (Av_bound : 0 <= eval Av < eval N) (Bv_bound : 0 <= eval Bv < eval N). Local Ltac do_clear := clear dependent B; clear dependent k; clear dependent ri; clear dependent Npos. Lemma small_add : small (add Av Bv). Proof. do_clear; unfold add; t_small. Qed. Lemma small_sub : small (sub Av Bv). Proof. do_clear; unfold sub; t_small. Qed. Lemma small_opp : small (opp Av). Proof. clear dependent Bv; do_clear; unfold opp, sub; t_small. Qed. Lemma eval_add : eval (add Av Bv) = eval Av + eval Bv + if (eval N <=? eval Av + eval Bv) then -eval N else 0. Proof. do_clear; unfold add; autorewrite with push_eval; reflexivity. Qed. Lemma eval_sub : eval (sub Av Bv) = eval Av - eval Bv + if (eval Av - eval Bv