Require Import Coq.Classes.Morphisms. Require Import Crypto.Algebra.Hierarchy Crypto.Algebra.Monoid. Module Import ModuloCoq8485. Import NPeano Nat. Infix "mod" := modulo. End ModuloCoq8485. Section ScalarMultProperties. Context {G eq add zero} `{monoidG:@monoid G eq add zero}. Context {mul:nat->G->G}. Local Infix "=" := eq : type_scope. Local Infix "=" := eq. Local Infix "+" := add. Local Infix "*" := mul. Class is_scalarmult := { scalarmult_0_l : forall P, 0 * P = zero; scalarmult_S_l : forall n P, S n * P = P + n * P; scalarmult_Proper : Proper (Logic.eq==>eq==>eq) mul }. Global Existing Instance scalarmult_Proper. Context `{mul_is_scalarmult:is_scalarmult}. Fixpoint scalarmult_ref (n:nat) (P:G) {struct n} := match n with | O => zero | S n' => add P (scalarmult_ref n' P) end. Global Instance Proper_scalarmult_ref : Proper (Logic.eq==>eq==>eq) scalarmult_ref. Proof using monoidG. repeat intro; subst. match goal with [n:nat |- _ ] => induction n; simpl @scalarmult_ref; [reflexivity|] end. repeat match goal with [H:_ |- _ ] => rewrite H end; reflexivity. Qed. Lemma scalarmult_ext : forall n P, mul n P = scalarmult_ref n P. Proof using Type*. induction n as [|n IHn]; simpl @scalarmult_ref; intros; rewrite <-?IHn; (apply scalarmult_0_l || apply scalarmult_S_l). Qed. Lemma scalarmult_1_l : forall P, 1*P = P. Proof using Type*. intros. rewrite scalarmult_S_l, scalarmult_0_l, right_identity; reflexivity. Qed. Lemma scalarmult_add_l : forall (n m:nat) (P:G), ((n + m)%nat * P = n * P + m * P). Proof using Type*. induction n as [|n IHn]; intros; rewrite ?scalarmult_0_l, ?scalarmult_S_l, ?plus_Sn_m, ?plus_O_n, ?scalarmult_S_l, ?left_identity, <-?associative, <-?IHn; reflexivity. Qed. Lemma scalarmult_zero_r : forall m, m * zero = zero. Proof using Type*. induction m as [|? IHm]; rewrite ?scalarmult_S_l, ?scalarmult_0_l, ?left_identity, ?IHm; try reflexivity. Qed. Lemma scalarmult_assoc : forall (n m : nat) P, n * (m * P) = (m * n)%nat * P. Proof using Type*. induction n as [|n IHn]; intros. { rewrite <-mult_n_O, !scalarmult_0_l. reflexivity. } { rewrite scalarmult_S_l, <-mult_n_Sm, <-Plus.plus_comm, scalarmult_add_l. rewrite IHn. reflexivity. } Qed. Lemma scalarmult_times_order : forall l B, l*B = zero -> forall n, (l * n) * B = zero. Proof using Type*. intros ? ? Hl ?. rewrite <-scalarmult_assoc, Hl, scalarmult_zero_r. reflexivity. Qed. Lemma scalarmult_mod_order : forall l B, l <> 0%nat -> l*B = zero -> forall n, n mod l * B = n * B. Proof using Type*. intros l B Hnz Hmod n. rewrite (NPeano.Nat.div_mod n l Hnz) at 2. rewrite scalarmult_add_l, scalarmult_times_order, left_identity by auto. reflexivity. Qed. End ScalarMultProperties. Section ScalarMultHomomorphism. Context {G EQ ADD ZERO} {monoidG:@monoid G EQ ADD ZERO}. Context {H eq add zero} {monoidH:@monoid H eq add zero}. Local Infix "=" := eq : type_scope. Local Infix "=" := eq : eq_scope. Context {MUL} {MUL_is_scalarmult:@is_scalarmult G EQ ADD ZERO MUL }. Context {mul} {mul_is_scalarmult:@is_scalarmult H eq add zero mul }. Context {phi} {homom:@Monoid.is_homomorphism G EQ ADD H eq add phi}. Context (phi_ZERO:phi ZERO = zero). Lemma homomorphism_scalarmult : forall n P, phi (MUL n P) = mul n (phi P). Proof using Type*. setoid_rewrite scalarmult_ext. induction n as [|n IHn]; intros; simpl; rewrite ?Monoid.homomorphism, ?IHn; easy. Qed. End ScalarMultHomomorphism. Global Instance scalarmult_ref_is_scalarmult {G eq add zero} `{@monoid G eq add zero} : @is_scalarmult G eq add zero (@scalarmult_ref G add zero). Proof. split; try exact _; intros; reflexivity. Qed.