(*************************************************************) (* This file is distributed under the terms of the *) (* GNU Lesser General Public License Version 2.1 *) (*************************************************************) (* Benjamin.Gregoire@inria.fr Laurent.Thery@inria.fr *) (*************************************************************) Require Import List. Require Import ZArith. Require Import Zorder. Require Import ZCAux. Require Import LucasLehmer. Require Import Pocklington. Require Import ZArith Znumtheory Zpow_facts. Require Import CyclicAxioms DoubleCyclic BigN Cyclic31 Int31. Require Import Pmod. Require Import Mod_op. Require Import W. Require Import Lucas. Require Export PocklingtonCertificat. Require Import NEll. Import CyclicAxioms DoubleType DoubleBase List. Open Scope Z_scope. Section test. Variable w: Type. Variable w_op: ZnZ.Ops w. Variable op_spec: ZnZ.Specs w_op. Variable p: positive. Variable b: w. Notation "[| x |]" := (ZnZ.to_Z x) (at level 0, x at level 99). Hypothesis b_pos: 0 < [|b|]. Variable m_op: mod_op w. Variable m_op_spec: mod_spec w_op b m_op. Open Scope positive_scope. Open Scope P_scope. Let pow := m_op.(power_mod). Let times := m_op.(mul_mod). Let pred:= m_op.(pred_mod). (* [fold_pow_mod a [q1,_;...;qn,_]] b = a ^(q1*...*qn) mod b *) (* invariant a mod N = a *) Definition fold_pow_mod (a: w) l := fold_left (fun a' (qp:positive*positive) => pow a' (fst qp)) l a. Lemma fold_pow_mod_spec : forall l (a:w), ([|a|] < [|b|])%Z -> [|fold_pow_mod a l|] = ([|a|]^(mkProd' l) mod [|b|])%Z. intros l; unfold fold_pow_mod; elim l; simpl fold_left; simpl mkProd'; auto; clear l. intros a H; rewrite Zpower_1_r; rewrite Zmod_small; auto with zarith. case (ZnZ.spec_to_Z a); auto with zarith. intros (p1, q1) l Rec a H. case (ZnZ.spec_to_Z a); auto with zarith; intros U1 U2. rewrite Rec. rewrite m_op_spec.(power_mod_spec) with (t := [|a|]); auto with zarith. rewrite <- Zpower_mod. rewrite times_Zmult; rewrite Zpower_mult; auto with zarith. apply Zle_lt_trans with (2 := H); auto with zarith. rewrite Zmod_small; auto with zarith. rewrite m_op_spec.(power_mod_spec) with (t := [|a|]); auto with zarith. match goal with |- context[(?X mod ?Y)%Z] => case (Z_mod_lt X Y); auto with zarith end. rewrite Zmod_small; auto with zarith. Qed. Fixpoint all_pow_mod (prod a: w) (l:dec_prime) {struct l}: w*w := match l with | nil => (prod,a) | (q,_) :: l => let m := pred (fold_pow_mod a l) in all_pow_mod (times prod m) (pow a q) l end. Lemma snd_all_pow_mod : forall l (prod a :w), ([|a|] < [|b|])%Z -> [|snd (all_pow_mod prod a l)|] = ([|a|]^(mkProd' l) mod [|b|])%Z. intros l; elim l; simpl all_pow_mod; simpl mkProd'; simpl snd; clear l. intros _ a H; rewrite Zpower_1_r; auto with zarith. rewrite Zmod_small; auto with zarith. case (ZnZ.spec_to_Z a); auto with zarith. intros (p1, q1) l Rec prod a H. case (ZnZ.spec_to_Z a); auto with zarith; intros U1 U2. rewrite Rec; auto with zarith. rewrite m_op_spec.(power_mod_spec) with (t := [|a|]); auto with zarith. rewrite <- Zpower_mod. rewrite times_Zmult; rewrite Zpower_mult; auto with zarith. apply Zle_lt_trans with (2 := H); auto with zarith. rewrite Zmod_small; auto with zarith. rewrite m_op_spec.(power_mod_spec) with (t := [|a|]); auto with zarith. match goal with |- context[(?X mod ?Y)%Z] => case (Z_mod_lt X Y); auto with zarith end. rewrite Zmod_small; auto with zarith. Qed. Lemma fold_aux : forall a N l prod, (fold_left (fun (r : Z) (k : positive * positive) => r * (a ^(N / fst k) - 1) mod [|b|]) l (prod mod [|b|]) mod [|b|] = fold_left (fun (r : Z) (k : positive * positive) => r * (a^(N / fst k) - 1)) l prod mod [|b|])%Z. induction l;simpl;intros. rewrite Zmod_mod; auto with zarith. rewrite <- IHl; auto with zarith. rewrite Zmult_mod; auto with zarith. rewrite Zmod_mod; auto with zarith. rewrite <- Zmult_mod; auto with zarith. Qed. Lemma fst_all_pow_mod : forall l (a:w) (R:positive) (prod A :w), [|prod|] = ([|prod|] mod [|b|])%Z -> [|A|] = ([|a|]^R mod [|b|])%Z -> [|fst (all_pow_mod prod A l)|] = ((fold_left (fun r (k:positive*positive) => (r * ([|a|] ^ (R* mkProd' l / (fst k)) - 1))) l [|prod|]) mod [|b|])%Z. intros l; elim l; simpl all_pow_mod; simpl fold_left; simpl fst; auto with zarith; clear l. intros (p1,q1) l Rec; simpl fst. intros a R prod A H1 H2. assert (F: (0 <= [|A|] < [|b|])%Z). rewrite H2. match goal with |- context[(?X mod ?Y)%Z] => case (Z_mod_lt X Y); auto with zarith end. assert (F1: ((fun x => x = x mod [|b|])%Z [|fold_pow_mod A l|])). rewrite Zmod_small; auto. rewrite fold_pow_mod_spec; auto with zarith. match goal with |- context[(?X mod ?Y)%Z] => case (Z_mod_lt X Y); auto with zarith end. assert (F2: ((fun x => x = x mod [|b|])%Z [|pred (fold_pow_mod A l)|])). rewrite Zmod_small; auto. rewrite(fun x => m_op_spec.(pred_mod_spec) x [|x|]); auto with zarith. match goal with |- context[(?X mod ?Y)%Z] => case (Z_mod_lt X Y); auto with zarith end. rewrite (Rec a (R * p1)%positive); auto with zarith. rewrite(fun x y => m_op_spec.(mul_mod_spec) x y [|x|] [|y|]); auto with zarith. rewrite(fun x => m_op_spec.(pred_mod_spec) x [|x|]); auto with zarith. rewrite fold_pow_mod_spec; auto with zarith. rewrite H2. repeat rewrite Zpos_mult. repeat rewrite times_Zmult. repeat rewrite <- Zmult_assoc. apply sym_equal; rewrite <- fold_aux; auto with zarith. apply sym_equal; rewrite <- fold_aux; auto with zarith. eq_tac; auto. match goal with |- context[fold_left ?x _ _] => apply f_equal2 with (f := fold_left x); auto with zarith end. rewrite Zmod_mod; auto with zarith. rewrite (Zmult_comm R); repeat rewrite <- Zmult_assoc; rewrite (Zmult_comm p1); rewrite Z_div_mult; auto with zarith. repeat rewrite (Zmult_mod [|prod|]);auto with zmisc. eq_tac; [idtac | eq_tac]; auto. eq_tac; auto. rewrite Zmod_mod; auto. repeat rewrite (fun x => Zminus_mod x 1); auto with zarith. eq_tac; auto; eq_tac; auto. rewrite Zmult_comm; rewrite <- Zpower_mod; auto with zmisc. rewrite Zpower_mult; auto with zarith. rewrite Zmod_mod; auto with zarith. rewrite Zmod_small; auto. rewrite(fun x y => m_op_spec.(mul_mod_spec) x y [|x|] [|y|]); auto with zarith. match goal with |- context[(?X mod ?Y)%Z] => case (Z_mod_lt X Y); auto with zarith end. rewrite(fun x => m_op_spec.(power_mod_spec) x [|x|]); auto with zarith. apply trans_equal with ([|A|] ^ p1 mod [|b|])%Z; auto. rewrite H2. rewrite Zpos_mult_morphism; rewrite Zpower_mult; auto with zarith. rewrite <- Zpower_mod; auto with zarith. rewrite Zmod_small; auto. Qed. Fixpoint pow_mod_pred (a:w) (l:dec_prime) {struct l} : w := match l with | nil => a | (q, p)::l => if (p ?= 1) then pow_mod_pred a l else let a' := iter_pos (Ppred p) _ (fun x => pow x q) a in pow_mod_pred a' l end. Lemma iter_pow_mod_spec : forall q p a, [|a|] = ([|a|] mod [|b|])%Z -> ([|iter_pos p _ (fun x => pow x q) a|] = [|a|]^q^p mod [|b|])%Z. intros q1 p1; elim p1; simpl iter_pos; clear p1. intros p1 Rec a Ha. rewrite(fun x => m_op_spec.(power_mod_spec) x [|x|]); auto with zarith. repeat rewrite Rec; auto with zarith. match goal with |- (Zpower_pos ?X ?Y mod ?Z = _)%Z => apply trans_equal with (X ^ Y mod Z)%Z; auto end. repeat rewrite <- Zpower_mod; auto with zmisc. repeat rewrite <- Zpower_mult; auto with zmisc. repeat rewrite <- Zpower_mod; auto with zmisc. repeat rewrite <- Zpower_mult; auto with zarith zmisc. eq_tac; auto. eq_tac; auto. rewrite Zpos_xI. assert (tmp: forall x, (2 * x = x + x)%Z); auto with zarith; rewrite tmp; clear tmp. repeat rewrite Zpower_exp; auto with zarith. rewrite Zpower_1_r; try ring; auto with misc. rewrite Zmod_mod; auto with zarith. rewrite Rec; auto with zmisc. rewrite Zmod_mod; auto with zarith. rewrite Rec; auto with zmisc. rewrite Zmod_mod; auto with zarith. intros p1 Rec a Ha. repeat rewrite Rec; auto with zarith. repeat rewrite <- Zpower_mod; auto with zmisc. repeat rewrite <- Zpower_mult; auto with zmisc. eq_tac; auto. eq_tac; auto. rewrite Zpos_xO. assert (tmp: forall x, (2 * x = x + x)%Z); auto with zarith; rewrite tmp; clear tmp. repeat rewrite Zpower_exp; auto with zarith. rewrite Zmod_mod; auto with zarith. intros a Ha; rewrite Zpower_1_r; auto with zarith. rewrite(fun x => m_op_spec.(power_mod_spec) x [|x|]); auto with zarith. Qed. Lemma pow_mod_pred_spec : forall l a, ([|a|] = [|a|] mod [|b|] -> [|pow_mod_pred a l|] = [|a|]^(mkProd_pred l) mod [|b|])%Z. intros l; elim l; simpl pow_mod_pred; simpl mkProd_pred; clear l. intros; rewrite Zpower_1_r; auto with zarith. intros (p1,q1) l Rec a H; simpl snd; simpl fst. case (q1 ?= 1)%P; auto with zarith. rewrite Rec; auto. rewrite iter_pow_mod_spec; auto with zarith. rewrite times_Zmult; rewrite pow_Zpower. rewrite <- Zpower_mod; auto with zarith. rewrite Zpower_mult; auto with zarith. rewrite Zmod_small; auto with zarith. rewrite iter_pow_mod_spec; auto with zarith. match goal with |- context[(?X mod ?Y)%Z] => case (Z_mod_lt X Y); auto with zarith end. Qed. End test. Require Import Bits. Definition test_pock N a dec sqrt := if (2 ?< N) then let Nm1 := Ppred N in let F1 := mkProd dec in match (Nm1 / F1)%P with | (Npos R1, N0) => if is_odd R1 then if is_even F1 then if (1 ?< a) then let (s,r') := (R1 / (xO F1))%P in match r' with | Npos r => if (a ?< N) then let op := cmk_op (Peano.pred (nat_of_P (get_height 31 (plength N)))) in let wN := znz_of_Z op (Zpos N) in let wa := znz_of_Z op (Zpos a) in let w1 := znz_of_Z op 1 in let mod_op := make_mod_op op wN in let pow := mod_op.(power_mod) in let ttimes := mod_op.(mul_mod) in let pred:= mod_op.(pred_mod) in let gcd:= ZnZ.gcd in let A := pow_mod_pred _ mod_op (pow wa R1) dec in match all_pow_mod _ mod_op w1 A dec with | (p, aNm1) => match ZnZ.to_Z aNm1 with (Zpos xH) => match ZnZ.to_Z (gcd p wN) with (Zpos xH) => if check_s_r s r sqrt then (N ?< (times ((times ((xO F1)+r+1) F1) + r) F1) + 1) else false | _ => false end | _ => false end end else false | _ => false end else false else false else false | _=> false end else false. Lemma test_pock_correct : forall N a dec sqrt, (forall k, In k dec -> prime (Zpos (fst k))) -> test_pock N a dec sqrt = true -> prime N. unfold test_pock;intros N a dec sqrt H. match goal with |- context[if ?x then _ else _] => case_eq x; intros If1; auto end. 2: intros; discriminate. match goal with H: (?X ?< ?Y) = true |- _ => generalize (is_lt_spec X Y); rewrite H; clear H; intros H end. generalize (div_eucl_spec (Ppred N) (mkProd dec)); destruct ((Ppred N) / (mkProd dec))%P as (R1,n). simpl fst; simpl snd; intros (H1, H2). destruct R1 as [ |R1]. intros; discriminate. destruct n. 2: intros; discriminate. match goal with |- context[if ?x then _ else _] => case_eq x; intros If2; auto end. assert (If0: Zodd R1). apply is_odd_Zodd; auto. clear If2; rename If0 into If2. 2: intros; discriminate. match goal with |- context[if ?x then _ else _] => case_eq x; intros If3; auto end. assert (If0: Zeven (mkProd dec)). apply is_even_Zeven; auto. clear If3; rename If0 into If3. 2: intros; discriminate. match goal with |- context[if ?x then _ else _] => case_eq x; intros If4; auto end. match goal with H: (?X ?< ?Y) = true |- _ => generalize (is_lt_spec X Y); rewrite H; clear H; intros H end. 2: intros; discriminate. generalize (div_eucl_spec R1 (xO (mkProd dec))); destruct ((R1 / xO (mkProd dec))%P) as (s,r'); simpl fst; simpl snd; intros (H3, H4). destruct r' as [ |r]. intros; discriminate. match goal with |- context[if ?x then _ else _] => case_eq x; intros If5; auto end. match goal with H: (?X ?< ?Y) = true |- _ => generalize (is_lt_spec X Y); rewrite H; clear H; intros H end. 2: intros; discriminate. set (bb := Peano.pred (nat_of_P (get_height 31 (plength N)))). set (w_op := cmk_op bb). assert (op_spec: ZnZ.Specs w_op). unfold bb, w_op; apply cmk_spec; auto. assert (F0: N < DoubleType.base (ZnZ.digits w_op)). apply Zlt_le_trans with (1 := plength_correct N). unfold w_op, DoubleType.base. rewrite cmk_op_digits. apply Zpower_le_monotone; split; auto with zarith. generalize (get_height_correct 31 (plength N)); unfold bb. set (p := plength N). replace (Z_of_nat (Peano.pred (nat_of_P (get_height 31 p)))) with ((Zpos (get_height 31 p) - 1) ); auto with zarith. rewrite pred_of_minus; rewrite inj_minus1; auto with zarith. rewrite <- Zpos_eq_Z_of_nat_o_nat_of_P; auto with zarith. generalize (lt_O_nat_of_P (get_height 31 p)); auto with zarith. assert (F1: ZnZ.to_Z (ZnZ.of_Z N) = N). rewrite ZnZ.of_Z_correct; auto with zarith. assert (F2: 1 < ZnZ.to_Z (ZnZ.of_Z N)). rewrite F1; auto with zarith. assert (F3: 0 < ZnZ.to_Z (ZnZ.of_Z N)); auto with zarith. assert (F4: ZnZ.to_Z (ZnZ.of_Z a) = a). rewrite ZnZ.of_Z_correct; auto with zarith. assert (F5: ZnZ.to_Z (ZnZ.of_Z 1) = 1). rewrite ZnZ.of_Z_correct; auto with zarith. assert (F6: N - 1 = (R1 * mkProd_pred dec)%positive * mkProd' dec). rewrite Zpos_mult. rewrite <- Zmult_assoc; rewrite mkProd_pred_mkProd; auto with zarith. simpl in H1; rewrite Zpos_mult in H1; rewrite <- H1; rewrite Ppred_Zminus; auto with zarith. assert (m_spec: mod_spec w_op (znz_of_Z w_op N) (make_mod_op w_op (znz_of_Z w_op N))). apply make_mod_spec; auto with zarith. match goal with |- context[all_pow_mod ?x ?y ?z ?t ?u] => generalize (fst_all_pow_mod x w_op op_spec _ F3 _ m_spec u (znz_of_Z w_op a) (R1*mkProd_pred dec) z t); generalize (snd_all_pow_mod x w_op op_spec _ F3 _ m_spec u z t); fold bb w_op; case (all_pow_mod x y z t u); simpl fst; simpl snd end. intros prod aNm1; intros H5 H6. case_eq (ZnZ.to_Z aNm1). intros; discriminate. 2: intros; discriminate. intros p; case p; clear p. intros; discriminate. intros; discriminate. intros If6. case_eq (ZnZ.to_Z (ZnZ.gcd prod (znz_of_Z w_op N))). intros; discriminate. 2: intros; discriminate. intros p; case p; clear p. intros; discriminate. intros; discriminate. intros If7. match goal with |- context[if ?x then _ else _] => case_eq x; intros If8; auto end. 2: intros; discriminate. intros If9. match goal with H: (?X ?< ?Y) = true |- _ => generalize (is_lt_spec X Y); rewrite H; clear H; intros H end. assert (U1: N - 1 = mkProd dec * R1). rewrite <- Ppred_Zminus in H1; auto with zarith. rewrite H1; simpl. repeat rewrite Zpos_mult; auto with zarith. assert (HH:Z_of_N s = R1 / (2 * mkProd dec) /\ Zpos r = R1 mod (2 * mkProd dec)). apply mod_unique with (2 * mkProd dec);auto with zarith. apply Z_mod_lt; auto with zarith. rewrite <- Z_div_mod_eq; auto with zarith. rewrite H3. rewrite (Zpos_xO (mkProd dec)). simpl Z_of_N; ring. case HH; clear HH; intros HH1 HH2. apply PocklingtonExtra with (F1:=mkProd dec) (R1:=R1) (m:=1); auto with zmisc zarith. case (Zle_lt_or_eq 1 (mkProd dec)); auto with zarith. simpl in H2; auto with zarith. intros HH; contradict If3; rewrite <- HH. apply Zodd_not_Zeven; red; auto. intros p; case p; clear p. intros HH; contradict HH. apply not_prime_0. 2: intros p (V1, _); contradict V1; apply Zle_not_lt; red; simpl; intros; discriminate. intros p Hprime Hdec; exists (Zpos a);repeat split; auto with zarith. apply trans_equal with (2 := If6). rewrite H5. rewrite pow_mod_pred_spec with (2 := m_spec); auto with zarith. rewrite F1. rewrite m_spec.(power_mod_spec) with (t := a); auto with zarith. change (znz_of_Z w_op a) with (ZnZ.of_Z a). change (znz_of_Z w_op N) with (ZnZ.of_Z N). rewrite F1; rewrite F4. rewrite <- Zpower_mod; auto with zarith. rewrite <- Zpower_mult; auto with zarith. rewrite mkProd_pred_mkProd; auto with zarith. rewrite U1; rewrite Zmult_comm. rewrite Zpower_mult; auto with zarith. rewrite <- Zpower_mod; auto with zarith. change (znz_of_Z w_op a) with (ZnZ.of_Z a). change (znz_of_Z w_op N) with (ZnZ.of_Z N). rewrite F1; rewrite F4; rewrite Zmod_small; auto with zarith. rewrite Zmod_small; auto with zarith. rewrite m_spec.(power_mod_spec) with (t := a); auto with zarith. match goal with |- context[?X mod ?Y] => case (Z_mod_lt X Y); auto with zarith end. change (znz_of_Z w_op a) with (ZnZ.of_Z a). change (znz_of_Z w_op N) with (ZnZ.of_Z N). rewrite F1; rewrite F4; rewrite Zmod_small; auto with zarith. rewrite pow_mod_pred_spec with (2 := m_spec); auto with zarith. match goal with |- context[?X mod ?Y] => case (Z_mod_lt X Y); auto with zarith end. rewrite Zmod_small; auto with zarith. rewrite m_spec.(power_mod_spec) with (t := a); auto with zarith. match goal with |- context[?X mod ?Y] => case (Z_mod_lt X Y); auto with zarith end. change (znz_of_Z w_op a) with (ZnZ.of_Z a). change (znz_of_Z w_op N) with (ZnZ.of_Z N). rewrite F1; rewrite F4; rewrite Zmod_small; auto with zarith. match type of H6 with _ -> _ -> ?X => assert (tmp: X); [apply H6 | clear H6; rename tmp into H6]; auto with zarith end. rewrite F1. change (znz_of_Z w_op 1) with (ZnZ.of_Z 1). rewrite F5; rewrite Zmod_small; auto with zarith. rewrite pow_mod_pred_spec with (2 := m_spec); auto with zarith. change (znz_of_Z w_op a) with (ZnZ.of_Z a). change (znz_of_Z w_op N) with (ZnZ.of_Z N). repeat (rewrite F1 || rewrite F4). rewrite m_spec.(power_mod_spec) with (t := a); auto with zarith. change (znz_of_Z w_op a) with (ZnZ.of_Z a). change (znz_of_Z w_op N) with (ZnZ.of_Z N). repeat (rewrite F1 || rewrite F4). rewrite Zpos_mult; rewrite <- Zpower_mod; auto with zarith. rewrite Zpower_mult; auto with zarith. change (znz_of_Z w_op a) with (ZnZ.of_Z a). change (znz_of_Z w_op N) with (ZnZ.of_Z N). repeat (rewrite F1 || rewrite F4). rewrite Zmod_small; auto with zarith. change (znz_of_Z w_op a) with (ZnZ.of_Z a). change (znz_of_Z w_op N) with (ZnZ.of_Z N). repeat (rewrite F1 || rewrite F4). rewrite Zmod_small; auto with zarith. rewrite (power_mod_spec m_spec) with (t := a); auto with zarith. match goal with |- context[?X mod ?Y] => case (Z_mod_lt X Y); auto with zarith end. change (znz_of_Z w_op a) with (ZnZ.of_Z a). change (znz_of_Z w_op N) with (ZnZ.of_Z N). repeat (rewrite F1 || rewrite F4); auto. rewrite Zmod_small; auto with zarith. change (znz_of_Z w_op N) with (ZnZ.of_Z N); auto. auto with zarith. change (znz_of_Z w_op a) with (ZnZ.of_Z a) in H6. change (znz_of_Z w_op N) with (ZnZ.of_Z N) in H6. change (znz_of_Z w_op 1) with (ZnZ.of_Z 1) in H6. rewrite F5 in H6; rewrite F1 in H6; rewrite F4 in H6. case in_mkProd_prime_div_in with (3 := Hdec); auto. intros p1 Hp1. rewrite <- F6 in H6. apply Zis_gcd_gcd; auto with zarith. change (rel_prime (a ^ ((N - 1) / p) - 1) N). match type of H6 with _ = ?X mod _ => apply rel_prime_div with (p := X); auto with zarith end. apply rel_prime_mod_rev; auto with zarith. red. pattern 1 at 4; rewrite <- If7; rewrite <- H6. pattern N at 2; rewrite <- F1. apply ZnZ.spec_gcd; auto with zarith. assert (foldtmp: forall (A B: Set) (f: A -> B -> A) (P: A -> Prop) l a b, In b l -> (forall x, P (f x b)) -> (forall x y, P x -> P (f x y)) -> P (fold_left f l a)). assert (foldtmp0: forall (A B: Set) (f: A -> B -> A) (P: A -> Prop) l a, P a -> (forall x y, P x -> P (f x y)) -> P (fold_left f l a)). intros A B f P l; elim l; simpl; auto. intros A B f P l; elim l; simpl; auto. intros a1 b HH; case HH. intros a1 l1 Rec a2 b [V|V] V1 V2; subst; auto. apply foldtmp0; auto. apply Rec with (b := b); auto with zarith. match goal with |- context [fold_left ?f _ _] => apply (foldtmp _ _ f (fun k => Zdivide (a ^ ((N - 1) / p) - 1) k)) with (b := (p, p1)); auto with zarith end. rewrite <- HH2. clear F0; match goal with H: ?X < ?Y |- ?X < ?Z => replace Z with Y; auto end. repeat (rewrite Zpos_plus || rewrite Zpos_mult || rewrite times_Zmult). rewrite Zpos_xO; ring. rewrite <- HH1; rewrite <- HH2. apply check_s_r_correct with sqrt; auto. Qed. (* Simple version of pocklington for primo *) Definition test_spock N a dec := if (2 ?< N) then let Nm1 := Ppred N in let F1 := mkProd dec in match (Nm1 / F1)%P with | (Npos R1, N0) => if (1 ?< a) then if (a ?< N) then if (N ?< F1 * F1) then let op := cmk_op (Peano.pred (nat_of_P (get_height 31 (plength N)))) in let wN := znz_of_Z op (Zpos N) in let wa := znz_of_Z op (Zpos a) in let w1 := znz_of_Z op 1 in let mod_op := make_mod_op op wN in let pow := mod_op.(power_mod) in let ttimes := mod_op.(mul_mod) in let pred:= mod_op.(pred_mod) in let gcd:= ZnZ.gcd in let A := pow_mod_pred _ mod_op (pow wa R1) dec in match all_pow_mod _ mod_op w1 A dec with | (p, aNm1) => match ZnZ.to_Z aNm1 with (Zpos xH) => match ZnZ.to_Z (gcd p wN) with (Zpos xH) => true | _ => false end | _ => false end end else false else false else false | _=> false end else false. Lemma test_spock_correct : forall N a dec, (forall k, In k dec -> prime (Zpos (fst k))) -> test_spock N a dec = true -> prime N. unfold test_spock;intros N a dec H. match goal with |- context[if ?x then _ else _] => case_eq x; intros If1; auto end. 2: intros; discriminate. match goal with H: (?X ?< ?Y) = true |- _ => generalize (is_lt_spec X Y); rewrite H; clear H; intros H end. generalize (div_eucl_spec (Ppred N) (mkProd dec)); destruct ((Ppred N) / (mkProd dec))%P as (R1,n). simpl fst; simpl snd; intros (H1, H2). destruct R1 as [ |R1]. intros; discriminate. destruct n. 2: intros; discriminate. match goal with |- context[if ?x then _ else _] => case_eq x; intros If2; auto end. match goal with H: (?X ?< ?Y) = true |- _ => generalize (is_lt_spec X Y); rewrite H; clear H; intros H end. 2: intros; discriminate. (* set (bb := pred (nat_of_P (get_height 31 (plength N)))). set (w_op := cmk_op bb). assert (op_spec: znz_spec w_op). unfold bb, w_op; apply cmk_spec; auto. assert (F0: N < Basic_type.base (znz_digits w_op)). apply Zlt_le_trans with (1 := plength_correct N). unfold w_op, Basic_type.base. rewrite cmk_op_digits. apply Zpower_le_monotone; split; auto with zarith. generalize (get_height_correct 31 (plength N)); unfold bb. set (p := plength N). replace (Z_of_nat (pred (nat_of_P (get_height 31 p)))) with ((Zpos (get_height 31 p) - 1) ); auto with zarith. rewrite pred_of_minus; rewrite inj_minus1; auto with zarith. rewrite <- Zpos_eq_Z_of_nat_o_nat_of_P; auto with zarith. generalize (lt_O_nat_of_P (get_height 31 p)); auto with zarith. *) set (bb := Peano.pred (nat_of_P (get_height 31 (plength N)))). set (w_op := cmk_op bb). assert (op_spec: ZnZ.Specs w_op). unfold bb, w_op; apply cmk_spec; auto. match goal with |- context[if ?x then _ else _] => case_eq x; intros If3; auto end. match goal with H: (?X ?< ?Y) = true |- _ => generalize (is_lt_spec X Y); rewrite H; clear H; intros H end. match goal with |- context[if ?x then _ else _] => case_eq x; intros If4; auto end. match goal with H: (?X ?< ?Y) = true |- _ => generalize (is_lt_spec X Y); rewrite H; clear H; intros H end. assert (F0: N < DoubleType.base (ZnZ.digits w_op)). apply Zlt_le_trans with (1 := plength_correct N). unfold w_op, DoubleType.base. rewrite cmk_op_digits. apply Zpower_le_monotone; split; auto with zarith. generalize (get_height_correct 31 (plength N)); unfold bb. set (p := plength N). replace (Z_of_nat (Peano.pred (nat_of_P (get_height 31 p)))) with ((Zpos (get_height 31 p) - 1) ); auto with zarith. rewrite pred_of_minus; rewrite inj_minus1; auto with zarith. rewrite <- Zpos_eq_Z_of_nat_o_nat_of_P; auto with zarith. generalize (lt_O_nat_of_P (get_height 31 p)); auto with zarith. assert (F1: ZnZ.to_Z (ZnZ.of_Z N) = N). rewrite ZnZ.of_Z_correct; auto with zarith. assert (F2: 1 < ZnZ.to_Z (ZnZ.of_Z N)). rewrite F1; auto with zarith. assert (F3: 0 < ZnZ.to_Z (ZnZ.of_Z N)); auto with zarith. assert (F4: ZnZ.to_Z (ZnZ.of_Z a) = a). rewrite ZnZ.of_Z_correct; auto with zarith. assert (F5: ZnZ.to_Z (ZnZ.of_Z 1) = 1). rewrite ZnZ.of_Z_correct; auto with zarith. assert (F6: N - 1 = (R1 * mkProd_pred dec)%positive * mkProd' dec). rewrite Zpos_mult. rewrite <- Zmult_assoc; rewrite mkProd_pred_mkProd; auto with zarith. simpl in H1; rewrite Zpos_mult in H1; rewrite <- H1; rewrite Ppred_Zminus; auto with zarith. assert (m_spec: mod_spec w_op (znz_of_Z w_op N) (make_mod_op w_op (znz_of_Z w_op N))). apply make_mod_spec; auto with zarith. match goal with |- context[all_pow_mod ?x ?y ?z ?t ?u] => generalize (fst_all_pow_mod x w_op op_spec _ F3 _ m_spec u (znz_of_Z w_op a) (R1*mkProd_pred dec) z t); generalize (snd_all_pow_mod x w_op op_spec _ F3 _ m_spec u z t); fold bb w_op; case (all_pow_mod x y z t u); simpl fst; simpl snd end. 2: intros; discriminate. intros prod aNm1; intros H5 H6. case_eq (ZnZ.to_Z aNm1). intros; discriminate. 2: intros; discriminate. intros p; case p; clear p. intros; discriminate. intros; discriminate. intros If5. case_eq (ZnZ.to_Z (ZnZ.gcd prod (znz_of_Z w_op N))). intros; discriminate. 2: intros; discriminate. intros p; case p; clear p. intros; discriminate. intros; discriminate. intros If6 _. assert (U1: N - 1 = mkProd dec * R1). rewrite <- Ppred_Zminus in H1; auto with zarith. rewrite H1; simpl. repeat rewrite Zpos_mult; auto with zarith. apply PocklingtonCorollary1 with (F1:=mkProd dec) (R1:=R1); auto with zmisc zarith. case (Zle_lt_or_eq 1 (mkProd dec)); auto with zarith. simpl in H2; auto with zarith. intros HH; contradict If4; rewrite Zpos_mult_morphism; rewrite <- HH. apply Zle_not_lt; auto with zarith. intros p; case p; clear p. intros HH; contradict HH. apply not_prime_0. 2: intros p (V1, _); contradict V1; apply Zle_not_lt; red; simpl; intros; discriminate. intros p Hprime Hdec; exists (Zpos a);repeat split; auto with zarith. apply trans_equal with (2 := If5). rewrite H5. rewrite pow_mod_pred_spec with (2 := m_spec); auto with zarith. rewrite F1. rewrite m_spec.(power_mod_spec) with (t := a); auto with zarith. change (znz_of_Z w_op N) with (ZnZ.of_Z N). change (znz_of_Z w_op a) with (ZnZ.of_Z a). rewrite F1; rewrite F4. rewrite <- Zpower_mod; auto with zarith. rewrite <- Zpower_mult; auto with zarith. rewrite mkProd_pred_mkProd; auto with zarith. rewrite U1; rewrite Zmult_comm. rewrite Zpower_mult; auto with zarith. rewrite <- Zpower_mod; auto with zarith. change (znz_of_Z w_op N) with (ZnZ.of_Z N). change (znz_of_Z w_op a) with (ZnZ.of_Z a). rewrite F1; rewrite F4; rewrite Zmod_small; auto with zarith. change (znz_of_Z w_op N) with (ZnZ.of_Z N). change (znz_of_Z w_op a) with (ZnZ.of_Z a). rewrite Zmod_small; auto with zarith. rewrite m_spec.(power_mod_spec) with (t := a); auto with zarith. match goal with |- context[?X mod ?Y] => case (Z_mod_lt X Y); auto with zarith end. change (znz_of_Z w_op N) with (ZnZ.of_Z N). change (znz_of_Z w_op a) with (ZnZ.of_Z a). rewrite F1; rewrite F4; rewrite Zmod_small; auto with zarith. rewrite pow_mod_pred_spec with (2 := m_spec); auto with zarith. match goal with |- context[?X mod ?Y] => case (Z_mod_lt X Y); auto with zarith end. rewrite Zmod_small; auto with zarith. rewrite m_spec.(power_mod_spec) with (t := a); auto with zarith. match goal with |- context[?X mod ?Y] => case (Z_mod_lt X Y); auto with zarith end. change (znz_of_Z w_op N) with (ZnZ.of_Z N). change (znz_of_Z w_op a) with (ZnZ.of_Z a). rewrite F1; rewrite F4; rewrite Zmod_small; auto with zarith. match type of H6 with _ -> _ -> ?X => assert (tmp: X); [apply H6 | clear H6; rename tmp into H6]; auto with zarith end. rewrite F1. change (znz_of_Z w_op 1) with (ZnZ.of_Z 1). rewrite F5; rewrite Zmod_small; auto with zarith. rewrite pow_mod_pred_spec with (2 := m_spec); auto with zarith. change (znz_of_Z w_op N) with (ZnZ.of_Z N). change (znz_of_Z w_op a) with (ZnZ.of_Z a). repeat (rewrite F1 || rewrite F4). rewrite m_spec.(power_mod_spec) with (t := a); auto with zarith. change (znz_of_Z w_op N) with (ZnZ.of_Z N). repeat (rewrite F1 || rewrite F4). rewrite Zpos_mult; rewrite <- Zpower_mod; auto with zarith. rewrite Zpower_mult; auto with zarith. change (znz_of_Z w_op N) with (ZnZ.of_Z N). repeat (rewrite F1 || rewrite F4). rewrite Zmod_small; auto with zarith. rewrite Zmod_small; auto with zarith. rewrite m_spec.(power_mod_spec) with (t := a); auto with zarith. match goal with |- context[?X mod ?Y] => case (Z_mod_lt X Y); auto with zarith end. change (znz_of_Z w_op N) with (ZnZ.of_Z N). change (znz_of_Z w_op a) with (ZnZ.of_Z a). repeat (rewrite F1 || rewrite F4). rewrite Zmod_small; auto with zarith. change (znz_of_Z w_op N) with (ZnZ.of_Z N) in H6. change (znz_of_Z w_op a) with (ZnZ.of_Z a) in H6. change (znz_of_Z w_op 1) with (ZnZ.of_Z 1) in H6. rewrite F5 in H6; rewrite F1 in H6; rewrite F4 in H6. case in_mkProd_prime_div_in with (3 := Hdec); auto. intros p1 Hp1. rewrite <- F6 in H6. apply Zis_gcd_gcd; auto with zarith. change (rel_prime (a ^ ((N - 1) / p) - 1) N). match type of H6 with _ = ?X mod _ => apply rel_prime_div with (p := X); auto with zarith end. apply rel_prime_mod_rev; auto with zarith. red. pattern 1 at 4; rewrite <- If6; rewrite <- H6. pattern N at 2; rewrite <- F1. apply ZnZ.spec_gcd; auto with zarith. assert (foldtmp: forall (A B: Set) (f: A -> B -> A) (P: A -> Prop) l a b, In b l -> (forall x, P (f x b)) -> (forall x y, P x -> P (f x y)) -> P (fold_left f l a)). assert (foldtmp0: forall (A B: Set) (f: A -> B -> A) (P: A -> Prop) l a, P a -> (forall x y, P x -> P (f x y)) -> P (fold_left f l a)). intros A B f P l; elim l; simpl; auto. intros A B f P l; elim l; simpl; auto. intros a1 b HH; case HH. intros a1 l1 Rec a2 b [V|V] V1 V2; subst; auto. apply foldtmp0; auto. apply Rec with (b := b); auto with zarith. match goal with |- context [fold_left ?f _ _] => apply (foldtmp _ _ f (fun k => Zdivide (a ^ ((N - 1) / p) - 1) k)) with (b := (p, p1)); auto with zarith end. intros; discriminate. Qed. Fixpoint test_Certif (lc : Certif) : bool := match lc with | nil => true | (Proof_certif _ _) :: lc => test_Certif lc | (Lucas_certif n p) :: lc => let xx := test_Certif lc in if xx then let yy := gt2 p in if yy then match p with Zpos p1 => let zz := Mp p in match zz with | Zpos n' => if (n ?= n')%P then let tt := lucas p1 in match tt with | Z0 => true | _ => false end else false | _ => false end | _ => false end else false else false | (Pock_certif n a dec sqrt) :: lc => let xx := test_pock n a dec sqrt in if xx then let yy := all_in lc dec in (if yy then test_Certif lc else false) else false | (SPock_certif n a dec) :: lc => let xx :=test_spock n a dec in if xx then let yy := all_in lc dec in (if yy then test_Certif lc else false) else false | (Ell_certif n ss l a b x y) :: lc => let xx := ell_test n ss l a b x y in if xx then let yy := all_in lc l in if yy then test_Certif lc else false else false end. Lemma test_Certif_In_Prime : forall lc, test_Certif lc = true -> forall c, In c lc -> prime (nprim c). intros lc; elim lc; simpl; auto. intros _ c H; case H. intros a; case a; simpl; clear a lc. intros N p l Rec H c [H1 | H1]; subst; auto with arith. intros n p l; case (test_Certif l); auto with zarith. 2: intros; discriminate. intros H H1 c [H2 | H2]; subst; auto with arith. simpl nprim. generalize H1; clear H1. case_eq (gt2 p). 2: intros; discriminate. case p; clear p; try (intros; discriminate; fail). unfold gt2; intros p H1. match goal with H: (?X ?< ?Y) = true |- _ => generalize (is_lt_spec X Y); rewrite H; clear H; intros H end. unfold Mp; case_eq (2 ^ p -1); try (intros; discriminate; fail). intros p1 Hp1. case_eq (n ?= p1)%P; try rewrite <- Hp1. 2: intros; discriminate. intros H2. match goal with H: (?X ?= ?Y)%P = true |- _ => generalize (is_eq_eq _ _ H); clear H; intros H end. generalize (lucas_prime H1); rewrite Hp1; rewrite <- H2. case (lucas p); try (intros; discriminate; fail); auto. intros N a d p l H. generalize (test_pock_correct N a d p). case (test_pock N a d p); auto. 2: intros; discriminate. generalize (all_in_In l d). case (all_in l d). 2: intros; discriminate. intros H1 H2 H3 c [H4 | H4]; subst; simpl; auto. apply H2; auto. intros k Hk. case H1 with (2 := Hk); auto. intros x (Hx1, Hx2); rewrite Hx2; auto. intros N a d l H. generalize (test_spock_correct N a d). case test_spock; auto. 2: intros; discriminate. generalize (all_in_In l d). case (all_in l d). 2: intros; discriminate. intros H1 H2 H3 c [H4 | H4]; subst; simpl; auto. apply H2; auto. intros k Hk. case H1 with (2 := Hk); auto. intros x (Hx1, Hx2); rewrite Hx2; auto. intros N S l A B x y l1. generalize (all_in_In l1 l). generalize (ell_test_correct N S l A B x y). case ell_test. case all_in; auto. intros H1 H2 H3 H4 c [H5 | H5]; try subst c; simpl; auto. apply H1. intros p Hp; case (H2 (refl_equal true) p); auto. intros x1 (Hx1, Hx2); rewrite Hx2; auto. intros; discriminate. intros; discriminate. Qed. Lemma Pocklington_refl : forall c lc, test_Certif (c::lc) = true -> prime (nprim c). Proof. intros c lc Heq;apply test_Certif_In_Prime with (c::lc);trivial;simpl;auto. Qed.