(*************************************************************) (* This file is distributed under the terms of the *) (* GNU Lesser General Public License Version 2.1 *) (*************************************************************) (* Benjamin.Gregoire@inria.fr Laurent.Thery@inria.fr *) (*************************************************************) Require Import ZArith Znumtheory Zpow_facts. Require Import CyclicAxioms DoubleCyclic BigN Cyclic31 Int31. Require Import W. Require Import Mod_op. Require Import ZEll. Require Import Bits. Import CyclicAxioms DoubleType DoubleBase. Set Implicit Arguments. Open Scope Z_scope. Record ex: Set := mkEx { vN : positive; vS : positive; vR: List.list (positive * positive); vA: Z; vB: Z; vx: Z; vy: Z }. Coercion Local Zpos : positive >-> Z. Record ex_spec (exx: ex): Prop := mkExS { n2_div: ~(2 | exx.(vN)); n_pos: 2 < exx.(vN); lprime: forall p : positive * positive, List.In p (vR exx) -> prime (fst p); lbig: 4 * vN exx < (Zmullp (vR exx) - 1) ^ 2; inC: vy exx ^ 2 mod vN exx = (vx exx ^ 3 + vA exx * vx exx + vB exx) mod vN exx }. Section NEll. Variable exx: ex. Variable exxs: ex_spec exx. Variable zZ: Type. Variable op: ZnZ.Ops zZ. Variable op_spec: ZnZ.Specs op. Definition z2Z z := ZnZ.to_Z z. Definition zN := snd (ZnZ.of_pos exx.(vN)). Variable mop: mod_op zZ. Variable mop_spec: mod_spec op zN mop. Variable N_small: exx.(vN) < base (ZnZ.digits op). Lemma z2ZN: z2Z zN = exx.(vN). apply (@ZnZ.of_Z_correct _ _ op_spec exx.(vN)); split; auto with zarith. Qed. Definition Z2z z := match z mod exx.(vN) with | Zpos p => snd (ZnZ.of_pos p) | _ => ZnZ.zero end. Definition S := exx.(vS). Definition R := exx.(vR). Definition A := Z2z exx.(vA). Definition B := Z2z exx.(vB). Definition xx := Z2z exx.(vx). Definition yy := Z2z exx.(vy). Definition c3 := Z2z 3. Definition c2 := Z2z 2. Definition c1 := Z2z 1. Definition c0 := Z2z 0. Inductive nelt: Type := nzero | ntriple: zZ -> zZ -> zZ -> nelt. Definition pp := ntriple xx yy c1. Definition nplus x y := mop.(add_mod) x y. Definition nmul x y := mop.(mul_mod) x y. Definition nsub x y := mop.(sub_mod) x y. Definition neq x y := match ZnZ.compare x y with Eq => true | _ => false end. Notation "x ++ y " := (nplus x y). Notation "x -- y" := (nsub x y) (at level 50, left associativity). Notation "x ** y" := (nmul x y) (at level 40, left associativity). Notation "x ?= y" := (neq x y). Definition ndouble: zZ -> nelt -> (nelt * zZ):= fun (sc: zZ) (p1: nelt) => match p1 with nzero => (p1, sc) | (ntriple x1 y1 z1) => if (y1 ?= c0) then (nzero, z1 ** sc) else (* we do 2p *) let m' := c3 ** x1 ** x1 ++ A ** z1 ** z1 in let l' := c2 ** y1 ** z1 in let m'2 := m' ** m' in let l'2 := l' ** l' in let l'3 := l'2 ** l' in let x3 := m'2 ** z1 -- c2 ** x1 ** l'2 in (ntriple (l' ** x3) (l'2 ** (m' ** x1 -- y1 ** l') -- m' ** x3) (z1 ** l'3), sc) end. Definition nadd := fun (sc: zZ) (p1 p2: nelt) => match p1, p2 with nzero, _ => (p2, sc) | _ , nzero => (p1, sc) | (ntriple x1 y1 z1), (ntriple x2 y2 z2) => let d1 := x2 ** z1 in let d2 := x1 ** z2 in let l := d1 -- d2 in let dl := d1 ++ d2 in let m := y2 ** z1 -- y1 ** z2 in if (l ?= c0) then (* we have p1 = p2 o p1 = -p2 *) if (m ?= c0) then if (y1 ?= c0) then (nzero, z1 ** z2 ** sc) else (* we do 2p *) let m' := c3 ** x1 ** x1 ++ A ** z1 ** z1 in let l' := c2 ** y1 ** z1 in let m'2 := m' ** m' in let l'2 := l' ** l' in let l'3 := l'2 ** l' in let x3 := m'2 ** z1 -- c2 ** x1 ** l'2 in (ntriple (l' ** x3) (l'2 ** (m' ** x1 -- y1 ** l') -- m' ** x3) (z1 ** l'3), z2 ** sc) else (* p - p *) (nzero, m ** z1 ** z2 ** sc) else let l2 := l ** l in let l3 := l2 ** l in let m2 := m ** m in let x3 := z1 ** z2 ** m2 -- l2 ** dl in (ntriple (l ** x3) (z2 ** l2 ** (m ** x1 -- y1 ** l) -- m ** x3) (z1 ** z2 ** l3), sc) end. Definition nopp p := match p with nzero => p | (ntriple x1 y1 z1) => (ntriple x1 (c0 -- y1) z1) end. Fixpoint scalb (sc: zZ) (b:bool) (a: nelt) (p: positive) {struct p}: nelt * zZ := match p with xH => if b then ndouble sc a else (a,sc) | xO p1 => let (a1, sc1) := scalb sc false a p1 in if b then let (a2, sc2) := ndouble sc1 a1 in nadd sc2 a a2 else ndouble sc1 a1 | xI p1 => let (a1, sc1) := scalb sc true a p1 in if b then ndouble sc1 a1 else let (a2, sc2) := ndouble sc1 a1 in nadd sc2 (nopp a) a2 end. Definition scal sc a p := scalb sc false a p. Definition scal_list sc a l := List.fold_left (fun (asc: nelt * zZ) p1 => let (a,sc) := asc in scal sc a p1) l (a,sc). Fixpoint scalL (sc:zZ) (a: nelt) (l: List.list positive) {struct l}: (nelt * zZ) := match l with List.nil => (a,sc) | List.cons n l1 => let (a1, sc1) := scal sc a n in let (a2, sc2) := scal_list sc1 a l1 in match a2 with nzero => (nzero, c0) | ntriple _ _ z => scalL (sc2 ** z) a1 l1 end end. Definition zpow sc p n := let (p,sc') := scal sc p n in (p, ZnZ.to_Z (ZnZ.gcd sc' zN)). Definition e2E n := match n with nzero => ZEll.nzero | ntriple x1 y1 z1 => ZEll.ntriple (z2Z x1) (z2Z y1) (z2Z z1) end. Definition wft t := z2Z t = (z2Z t) mod (z2Z zN). Lemma vN_pos: 0 < exx.(vN). red; simpl; auto. Qed. Hint Resolve vN_pos. Lemma nplusz: forall x y, wft x -> wft y -> z2Z (x ++ y) = ZEll.nplus (vN exx) (z2Z x) (z2Z y). Proof. intros x y Hx Hy. unfold z2Z, nplus. rewrite (mop_spec.(add_mod_spec) _ _ _ _ Hx Hy); auto. rewrite <- z2ZN; auto. Qed. Lemma nplusw: forall x y, wft x -> wft y -> wft (x ++ y). Proof. intros x y Hx Hy. unfold wft. pattern (z2Z (x ++ y)) at 2; rewrite (nplusz Hx Hy). unfold ZEll.nplus; rewrite z2ZN. rewrite Zmod_mod; auto. apply (nplusz Hx Hy). Qed. Lemma nsubz: forall x y, wft x -> wft y -> z2Z (x -- y) = ZEll.nsub (vN exx) (z2Z x) (z2Z y). Proof. intros x y Hx Hy. unfold z2Z, nsub. rewrite (mop_spec.(sub_mod_spec) _ _ _ _ Hx Hy); auto. rewrite <- z2ZN; auto. Qed. Lemma nsubw: forall x y, wft x -> wft y -> wft (x -- y). Proof. intros x y Hx Hy. unfold wft. pattern (z2Z (x -- y)) at 2; rewrite (nsubz Hx Hy). unfold ZEll.nsub; rewrite z2ZN. rewrite Zmod_mod; auto. apply (nsubz Hx Hy). Qed. Lemma nmulz: forall x y, wft x -> wft y -> z2Z (x ** y) = ZEll.nmul (vN exx) (z2Z x) (z2Z y). Proof. intros x y Hx Hy. unfold z2Z, nmul. rewrite (mop_spec.(mul_mod_spec) _ _ _ _ Hx Hy); auto. rewrite <- z2ZN; auto. Qed. Lemma nmulw: forall x y, wft x -> wft y -> wft (x ** y). Proof. intros x y Hx Hy. unfold wft. pattern (z2Z (x ** y)) at 2; rewrite (nmulz Hx Hy). unfold ZEll.nmul; rewrite z2ZN. rewrite Zmod_mod; auto. apply (nmulz Hx Hy). Qed. Hint Resolve nmulw nplusw nsubw. Definition wfe p := match p with ntriple x y z => wft x /\ wft y /\ wft z | _ => True end. Lemma z2Zx: forall x, z2Z (Z2z x) = x mod exx.(vN). unfold Z2z; intros x. generalize (Z_mod_lt x exx.(vN)). case_eq (x mod exx.(vN)). intros _ _. simpl; unfold z2Z; rewrite ZnZ.spec_0; auto. intros p Hp HH; case HH; auto with zarith; clear HH. intros _ HH1. case (ZnZ.spec_to_Z zN). generalize z2ZN; unfold z2Z; intros HH; rewrite HH; auto. intros _ H0. set (v := ZnZ.of_pos p); generalize HH1. rewrite (ZnZ.spec_of_pos p); fold v. case (fst v). simpl; auto. intros p1 H1. contradict H0; apply Zle_not_lt. apply Zlt_le_weak; apply Zle_lt_trans with (2:= H1). apply Zle_trans with (1 * base (ZnZ.digits op) + 0); auto with zarith. apply Zplus_le_compat; auto. apply Zmult_gt_0_le_compat_r; auto with zarith. case (ZnZ.spec_to_Z (snd v)); auto with zarith. case p1; red; simpl; intros; discriminate. case (ZnZ.spec_to_Z (snd v)); auto with zarith. intros p Hp; case (Z_mod_lt x exx.(vN)); auto with zarith. rewrite Hp; intros HH; case HH; auto. Qed. Lemma z2Zx1: forall x, z2Z (Z2z x) = z2Z (Z2z x) mod z2Z zN. Proof. unfold Z2z; intros x. generalize (Z_mod_lt x exx.(vN)). case_eq (x mod exx.(vN)). intros _ _. simpl; unfold z2Z; rewrite ZnZ.spec_0; auto. intros p H1 H2. case (ZnZ.spec_to_Z zN). generalize z2ZN; unfold z2Z; intros HH; rewrite HH; auto. intros _ H0. case H2; auto with zarith; clear H2; intros _ H2. rewrite Zmod_small; auto. set (v := ZnZ.of_pos p). split. case (ZnZ.spec_to_Z (snd v)); auto. generalize H2; rewrite (ZnZ.spec_of_pos p); fold v. case (fst v). simpl; auto. intros p1 H. contradict H0; apply Zle_not_lt. apply Zlt_le_weak; apply Zle_lt_trans with (2:= H). apply Zle_trans with (1 * base (ZnZ.digits op) + 0); auto with zarith. apply Zplus_le_compat; auto. apply Zmult_gt_0_le_compat_r; auto with zarith. case (ZnZ.spec_to_Z (snd v)); auto with zarith. case p1; red; simpl; intros; discriminate. case (ZnZ.spec_to_Z (snd v)); auto with zarith. intros p Hp; case (Z_mod_lt x exx.(vN)); auto with zarith. rewrite Hp; intros HH; case HH; auto. Qed. Lemma c0w: wft c0. Proof. red; unfold c0; apply z2Zx1. Qed. Lemma c2w: wft c2. Proof. red; unfold c2; apply z2Zx1. Qed. Lemma c3w: wft c3. Proof. red; unfold c3; apply z2Zx1. Qed. Lemma Aw: wft A. Proof. red; unfold A; apply z2Zx1. Qed. Hint Resolve c0w c2w c3w Aw. Ltac nw := repeat (apply nplusw || apply nsubw || apply nmulw || apply c2w || apply c3w || apply Aw); auto. Lemma nadd_wf: forall x y sc, wfe x -> wfe y -> wft sc -> wfe (fst (nadd sc x y)) /\ wft (snd (nadd sc x y)). Proof. intros x; case x; clear; auto. intros x1 y1 z1 y; case y; clear; auto. intros x2 y2 z2 sc (wfx1,(wfy1, wfz1)) (wfx2,(wfy2, wfz2)) wfsc; simpl; auto. case neq. 2: repeat split; simpl; nw. case neq. 2: repeat split; simpl; nw. case neq. repeat split; simpl; nw; auto. repeat split; simpl; nw; auto. Qed. Lemma ztest: forall x y, x ?= y =Zeq_bool (z2Z x) (z2Z y). Proof. intros x y. unfold neq. rewrite (ZnZ.spec_compare x y); case Zcompare_spec; intros HH; match goal with H: context[x] |- _ => generalize H; clear H; intros HH1 end. symmetry; apply GZnZ.Zeq_iok; auto. case_eq (Zeq_bool (z2Z x) (z2Z y)); intros H1; auto; generalize HH1; generalize (Zeq_bool_eq _ _ H1); unfold z2Z; intros HH; rewrite HH; auto with zarith. case_eq (Zeq_bool (z2Z x) (z2Z y)); intros H1; auto; generalize HH1; generalize (Zeq_bool_eq _ _ H1); unfold z2Z; intros HH; rewrite HH; auto with zarith. Qed. Lemma zc0: z2Z c0 = 0. Proof. unfold z2Z, c0, z2Z; simpl. generalize ZnZ.spec_0; auto. Qed. Ltac iftac t := match t with context[if ?x ?= ?y then _ else _] => case_eq (x ?= y) end. Ltac ftac := match goal with |- context[?x = ?y] => (iftac x); let H := fresh "tmp" in (try rewrite ztest; try rewrite zc0; intros H; repeat ((rewrite nmulz in H || rewrite nplusz in H || rewrite nsubz in H); auto); try (rewrite H; clear H)) end. Require Import Zmod. Lemma c2ww: forall x, ZEll.nmul (vN exx) 2 x = ZEll.nmul (vN exx) (z2Z c2) x. intros x; unfold ZEll.nmul. unfold c2; rewrite z2Zx; rewrite Zmodml; auto. Qed. Lemma c3ww: forall x, ZEll.nmul (vN exx) 3 x = ZEll.nmul (vN exx) (z2Z c3) x. intros x; unfold ZEll.nmul. unfold c3; rewrite z2Zx; rewrite Zmodml; auto. Qed. Lemma Aww: forall x, ZEll.nmul (vN exx) exx.(vA) x = ZEll.nmul (vN exx) (z2Z A) x. intros x; unfold ZEll.nmul. unfold A; rewrite z2Zx; rewrite Zmodml; auto. Qed. Lemma nadd_correct: forall x y sc, wfe x -> wfe y -> wft sc -> e2E (fst (nadd sc x y)) = fst (ZEll.nadd exx.(vN) exx.(vA) (z2Z sc) (e2E x) (e2E y) )/\ z2Z (snd (nadd sc x y)) = snd (ZEll.nadd exx.(vN) exx.(vA) (z2Z sc) (e2E x) (e2E y)). Proof. intros x; case x; clear; auto. intros x1 y1 z1 y; case y; clear; auto. intros x2 y2 z2 sc (wfx1,(wfy1, wfz1)) (wfx2,(wfy2, wfz2)) wfsc; simpl. ftac. ftac. ftac. simpl; split; auto. repeat ((rewrite nmulz || rewrite nplusz || rewrite nsubz); auto). simpl; split; auto. repeat ((rewrite nmulz || rewrite nplusz || rewrite nsubz|| rewrite c2ww || rewrite c3ww || rewrite Aww); try nw; auto). rewrite nmulz; auto. simpl; split; auto. repeat ((rewrite nmulz || rewrite nplusz || rewrite nsubz); auto). simpl; split; auto. repeat ((rewrite nmulz || rewrite nplusz || rewrite nsubz || rewrite c2ww || rewrite c3ww || rewrite Aww); try nw; auto). Qed. Lemma ndouble_wf: forall x sc, wfe x -> wft sc -> wfe (fst (ndouble sc x)) /\ wft (snd (ndouble sc x)). Proof. intros x; case x; clear; auto. intros x1 y1 z1 sc (wfx1,(wfy1, wfz1)) wfsc; simpl; auto. repeat (case neq; repeat split; simpl; nw; auto). Qed. Lemma ndouble_correct: forall x sc, wfe x -> wft sc -> e2E (fst (ndouble sc x)) = fst (ZEll.ndouble exx.(vN) exx.(vA) (z2Z sc) (e2E x))/\ z2Z (snd (ndouble sc x)) = snd (ZEll.ndouble exx.(vN) exx.(vA) (z2Z sc) (e2E x)). Proof. intros x; case x; clear; auto. intros x1 y1 z1 sc (wfx1,(wfy1, wfz1)) wfsc; simpl. ftac. simpl; split; auto. repeat ((rewrite nmulz || rewrite nplusz || rewrite nsubz); auto). simpl; split; auto. repeat ((rewrite nmulz || rewrite nplusz || rewrite nsubz || rewrite c2ww || rewrite c3ww || rewrite Aww); try nw; auto). Qed. Lemma nopp_wf: forall x, wfe x -> wfe (nopp x). Proof. intros x; case x; simpl nopp; auto. intros x1 y1 z1 [H1 [H2 H3]]; repeat split; auto. Qed. Lemma scalb_wf: forall n b x sc, wfe x -> wft sc -> wfe (fst (scalb sc b x n)) /\ wft (snd (scalb sc b x n)). Proof. intros n; elim n; unfold scalb; fold scalb; auto. intros n1 Hrec b x sc H H1. case (Hrec true x sc H H1). case scalb; simpl fst; simpl snd. intros a1 sc1 H2 H3. case (ndouble_wf _ H2 H3); auto; case ndouble; simpl fst; simpl snd; intros x2 sc2 H4 H5. case b; auto. case (nadd_wf _ _ (nopp_wf _ H) H4 H5); auto; case ndouble; simpl fst; simpl snd; intros x2 sc2 H4 H5. intros n1 Hrec b x sc H H1. case (Hrec false x sc H H1). case scalb; simpl fst; simpl snd. intros a1 sc1 H2 H3. case (ndouble_wf _ H2 H3); auto; case ndouble; simpl fst; simpl snd; intros x2 sc2 H4 H5. case b; auto. case (nadd_wf _ _ H H4 H5); auto; case ndouble; simpl fst; simpl snd; intros x2 sc2 H4 H5. intros b x sc H H1; case b; auto. case (ndouble_wf _ H H1); auto. Qed. Lemma scal_wf: forall n x sc, wfe x -> wft sc -> wfe (fst (scal sc x n)) /\ wft (snd (scal sc x n)). Proof. intros n; exact (scalb_wf n false). Qed. Lemma nopp_correct: forall x, wfe x -> e2E x = ZEll.nopp exx.(vN) (e2E (nopp x)). Proof. intros x; case x; simpl; auto. intros x1 y1 z1 [H1 [H2 H3]]; apply f_equal3 with (f := ZEll.ntriple); auto. rewrite nsubz; auto. rewrite zc0. unfold ZEll.nsub, ninv; simpl. apply sym_equal. rewrite <- (Z_mod_plus) with (b := -(-z2Z y1 /exx.(vN))); auto with zarith. rewrite <- Zopp_mult_distr_l. rewrite <- Zopp_plus_distr. rewrite Zmult_comm; rewrite Zplus_comm. rewrite <- Z_div_mod_eq; auto with zarith. rewrite Zopp_involutive; rewrite <- z2ZN. apply sym_equal; auto. Qed. Lemma scalb_correct: forall n b x sc, wfe x -> wft sc -> e2E (fst (scalb sc b x n)) = fst (ZEll.scalb exx.(vN) exx.(vA) (z2Z sc) b (e2E x) n)/\ z2Z (snd (scalb sc b x n)) = snd (ZEll.scalb exx.(vN) exx.(vA) (z2Z sc) b (e2E x) n). Proof. intros n; elim n; clear; auto. intros p Hrec b x sc H1 H2. case b; unfold scalb; fold scalb. generalize (scalb_wf p true x H1 H2); generalize (Hrec true _ _ H1 H2); case scalb; simpl. case ZEll.scalb; intros r1 rc1; simpl. intros a2 sc2 (H3, H4) (H5, H6); subst r1 rc1. apply ndouble_correct; auto. generalize (scalb_wf p true x H1 H2); generalize (Hrec true _ _ H1 H2); case scalb; simpl. case ZEll.scalb; intros r1 rc1; simpl. intros a2 sc2 (H3, H4) (H5, H6); subst r1 rc1. generalize (ndouble_wf _ H5 H6); generalize (ndouble_correct _ H5 H6); case ndouble; simpl. case ZEll.ndouble; intros r1 rc1; simpl. intros a3 sc3 (H7,H8) (H9,H10); subst r1 rc1. replace (ZEll.nopp (vN exx) (e2E x)) with (e2E (nopp x)). apply nadd_correct; auto. generalize H1; case x; auto. intros x1 y1 z1 [HH1 [HH2 HH3]]; split; auto. rewrite nopp_correct; auto. apply f_equal2 with (f := ZEll.nopp); auto. generalize H1; case x; simpl; auto; clear x H1. intros x1 y1 z1 [HH1 [HH2 HH3]]; apply f_equal3 with (f := ZEll.ntriple); auto. repeat rewrite nsubz; auto. rewrite zc0. unfold ZEll.nsub; simpl. rewrite <- (Z_mod_plus) with (b := -(-z2Z y1 /exx.(vN))); auto with zarith. rewrite <- Zopp_mult_distr_l. rewrite <- Zopp_plus_distr. rewrite Zmult_comm; rewrite Zplus_comm. rewrite <- Z_div_mod_eq; auto with zarith. rewrite Zopp_involutive; rewrite <- z2ZN. apply sym_equal; auto. generalize H1; case x; auto. intros x1 y1 z1 [HH1 [HH2 HH3]]; split; auto. intros p Hrec b x sc H1 H2. case b; unfold scalb; fold scalb. generalize (scalb_wf p false x H1 H2); generalize (Hrec false _ _ H1 H2); case scalb; simpl. case ZEll.scalb; intros r1 rc1; simpl. intros a2 sc2 (H3, H4) (H5, H6); subst r1 rc1. generalize (ndouble_wf _ H5 H6); generalize (ndouble_correct _ H5 H6); case ndouble; simpl. case ZEll.ndouble; intros r1 rc1; simpl. intros a3 sc3 (H7,H8) (H9,H10); subst r1 rc1. replace (ZEll.nopp (vN exx) (e2E x)) with (e2E (nopp x)). apply nadd_correct; auto. rewrite nopp_correct; auto. apply f_equal2 with (f := ZEll.nopp); auto. generalize H1; case x; simpl; auto; clear x H1. intros x1 y1 z1 [HH1 [HH2 HH3]]; apply f_equal3 with (f := ZEll.ntriple); auto. repeat rewrite nsubz; auto. rewrite zc0. unfold ZEll.nsub; simpl. rewrite <- (Z_mod_plus) with (b := -(-z2Z y1 /exx.(vN))); auto with zarith. rewrite <- Zopp_mult_distr_l. rewrite <- Zopp_plus_distr. rewrite Zmult_comm; rewrite Zplus_comm. rewrite <- Z_div_mod_eq; auto with zarith. rewrite Zopp_involutive; rewrite <- z2ZN. apply sym_equal; auto. generalize H1; case x; auto. intros x1 y1 z1 [HH1 [HH2 HH3]]; split; auto. generalize (scalb_wf p false x H1 H2); generalize (Hrec false _ _ H1 H2); case scalb; simpl. case ZEll.scalb; intros r1 rc1; simpl. intros a2 sc2 (H3, H4) (H5, H6); subst r1 rc1. apply ndouble_correct; auto. intros b x sc H H1. case b; simpl; auto. apply ndouble_correct; auto. Qed. Lemma scal_correct: forall n x sc, wfe x -> wft sc -> e2E (fst (scal sc x n)) = fst (ZEll.scal exx.(vN) exx.(vA) (z2Z sc) (e2E x) n)/\ z2Z (snd (scal sc x n)) = snd (ZEll.scal exx.(vN) exx.(vA) (z2Z sc) (e2E x) n). Proof. intros n; exact (scalb_correct n false). Qed. Lemma scal_list_correct: forall l x sc, wfe x -> wft sc -> e2E (fst (scal_list sc x l)) = fst (ZEll.scal_list exx.(vN) exx.(vA) (z2Z sc) (e2E x) l)/\ z2Z (snd (scal_list sc x l)) = snd (ZEll.scal_list exx.(vN) exx.(vA) (z2Z sc) (e2E x) l). Proof. intros l1; elim l1; simpl; auto. unfold scal_list, ZEll.scal_list; simpl; intros a l2 Hrec x sc H1 H2. generalize (scal_correct a _ H1 H2) (scal_wf a _ H1 H2); case scal. case ZEll.scal; intros r1 rsc1; simpl. simpl; intros a1 sc1 (H3, H4) (H5, H6); subst r1 rsc1; auto. Qed. Lemma scal_list_wf: forall l x sc, wfe x -> wft sc -> wfe (fst (scal_list sc x l)) /\ wft (snd (scal_list sc x l)). Proof. intros l1; elim l1; simpl; auto. unfold scal_list; intros a l Hrec x sc H1 H2; simpl. generalize (@scal_wf a _ _ H1 H2); case (scal sc x a); simpl; intros x1 sc1 [H3 H4]; auto. Qed. Lemma scalL_wf: forall l x sc, wfe x -> wft sc -> wfe (fst (scalL sc x l)) /\ wft (snd (scalL sc x l)). Proof. intros l1; elim l1; simpl; auto. intros a l2 Hrec x sc H1 H2. generalize (scal_wf a _ H1 H2); case scal; simpl. intros a1 sc1 (H3, H4); auto. generalize (scal_list_wf l2 _ H1 H4); case scal_list; simpl. intros a2 sc2; case a2; simpl; auto. intros x1 y1 z1 ((V1, (V2, V3)), V4); apply Hrec; auto. Qed. Lemma scalL_correct: forall l x sc, wfe x -> wft sc -> e2E (fst (scalL sc x l)) = fst (ZEll.scalL exx.(vN) exx.(vA) (z2Z sc) (e2E x) l)/\ z2Z (snd (scalL sc x l)) = snd (ZEll.scalL exx.(vN) exx.(vA) (z2Z sc) (e2E x) l). Proof. intros l1; elim l1; simpl; auto. intros a l2 Hrec x sc H1 H2. generalize (scal_wf a _ H1 H2) (scal_correct a _ H1 H2); case scal; simpl. case ZEll.scal; intros r1 rsc1; simpl. intros a1 sc1 (H3, H4) (H5, H6); subst r1 rsc1. generalize (scal_list_wf l2 _ H1 H4) (scal_list_correct l2 _ H1 H4); case scal_list; simpl. case ZEll.scal_list; intros r1 rsc1; simpl. intros a2 sc2 (H7, H8) (H9, H10); subst r1 rsc1. generalize H7; clear H7; case a2; simpl; auto. rewrite zc0; auto. intros x1 y1 z1 (V1, (V2, V3)); auto. generalize (nmulw H8 V3) (nmulz H8 V3); intros V4 V5; rewrite <- V5. apply Hrec; auto. Qed. Lemma f4 : wft (Z2z 4). Proof. red; apply z2Zx1. Qed. Lemma f27 : wft (Z2z 27). Proof. red; apply z2Zx1. Qed. Lemma Bw : wft B. Proof. red; unfold B; apply z2Zx1. Qed. Hint Resolve f4 f27 Bw. Lemma mww: forall x y, ZEll.nmul (vN exx) (x mod (vN exx) ) y = ZEll.nmul (vN exx) x y. intros x y; unfold ZEll.nmul; rewrite Zmodml; auto. Qed. Lemma wwA: forall x, ZEll.nmul (vN exx) x exx.(vA) = ZEll.nmul (vN exx) x (z2Z A). intros x; unfold ZEll.nmul. unfold A; rewrite z2Zx; rewrite Zmodmr; auto. Qed. Lemma wwB: forall x, ZEll.nmul (vN exx) x exx.(vB) = ZEll.nmul (vN exx) x (z2Z B). intros x; unfold ZEll.nmul. unfold B; rewrite z2Zx; rewrite Zmodmr; auto. Qed. Lemma scalL_prime: let a := ntriple (Z2z (exx.(vx))) (Z2z (exx.(vy))) c1 in let isc := (Z2z 4) ** A ** A ** A ++ (Z2z 27) ** B ** B in let (a1, sc1) := scal isc a exx.(vS) in let (S1,R1) := psplit exx.(vR) in let (a2, sc2) := scal sc1 a1 S1 in let (a3, sc3) := scalL sc2 a2 R1 in match a3 with nzero => if (Zeq_bool (Zgcd (z2Z sc3) exx.(vN)) 1) then prime exx.(vN) else True | _ => True end. Proof. intros a isc. case_eq (scal isc a (vS exx)); intros a1 sc1 Ha1. case_eq (psplit (vR exx)); intros S1 R1 HS1. case_eq (scal sc1 a1 S1); intros a2 sc2 Ha2. case_eq (scalL sc2 a2 R1); intros a3 sc3; case a3; auto. intros Ha3; case_eq (Zeq_bool (Zgcd (z2Z sc3) (vN exx)) 1); auto. intros H1. assert (F0: (vy exx mod vN exx) ^ 2 mod vN exx = ((vx exx mod vN exx) ^ 3 + vA exx * (vx exx mod vN exx) + vB exx) mod vN exx). generalize exxs.(inC). simpl; unfold Zpower_pos; simpl. repeat rewrite Zmult_1_r. intros HH. match goal with |- ?t1 = ?t2 => rmod t1; auto end. rewrite HH. rewrite Zplus_mod; auto; symmetry; rewrite Zplus_mod; auto; symmetry. apply f_equal2 with (f := Zmod); auto. apply f_equal2 with (f := Zplus); auto. rewrite Zplus_mod; auto; symmetry; rewrite Zplus_mod; auto; symmetry. apply f_equal2 with (f := Zmod); auto. apply f_equal2 with (f := Zplus); auto. rewrite Zmult_mod; auto; symmetry; rewrite Zmult_mod; auto; symmetry. apply f_equal2 with (f := Zmod); auto. apply f_equal2 with (f := Zmult); auto. rewrite Zmod_mod; auto. match goal with |- ?t1 = ?t2 => rmod t2; auto end. rewrite Zmult_mod; auto; symmetry; rewrite Zmult_mod; auto; symmetry. apply f_equal2 with (f := Zmod); auto. rewrite Zmod_mod; auto. generalize (@ZEll.scalL_prime exx.(vN) (exx.(vx) mod exx.(vN)) (exx.(vy) mod exx.(vN)) exx.(vA) exx.(vB) exxs.(n_pos) exxs.(n2_div) exx.(vR) exxs.(lprime) exx.(vS) exxs.(lbig) F0); simpl. generalize (@scal_wf (vS exx) a isc) (@scal_correct (vS exx) a isc). unfold isc. rewrite nplusz; auto; try nw; auto. repeat rewrite nmulz; auto; try nw; auto. repeat rewrite z2Zx. repeat rewrite wwA || rewrite wwB|| rewrite mww. replace (e2E a) with (ZEll.ntriple (vx exx mod vN exx) (vy exx mod vN exx) 1). case ZEll.scal. fold isc; rewrite HS1; rewrite Ha1; simpl; auto. intros r1 rsc1 HH1 HH2. case HH1; clear HH1. unfold c1; repeat split; red; try apply z2Zx1. unfold isc; nw. case HH2; clear HH2. unfold c1; repeat split; red; try apply z2Zx1. unfold isc; nw. intros U1 U2 W1 W2; subst r1 rsc1. generalize (@scal_wf S1 a1 sc1) (@scal_correct S1 a1 sc1). case ZEll.scal. intros r1 rsc1 HH1 HH2. case HH1; clear HH1; auto. case HH2; clear HH2; auto. rewrite Ha2; simpl. intros U1 U2 W3 W4; subst r1 rsc1. generalize (@scalL_wf R1 a2 sc2) (@scalL_correct R1 a2 sc2). case ZEll.scalL. intros n; case n; auto. rewrite Ha3; simpl. intros rsc1 HH1 HH2. case HH1; clear HH1; auto. case HH2; clear HH2; auto. intros _ U2 _ W5; subst rsc1. rewrite H1; auto. intros x1 y1 z1 sc4; rewrite Ha3; simpl; auto. intros _ HH; case HH; auto. intros; discriminate. unfold a; simpl. unfold c1; repeat rewrite z2Zx. rewrite (Zmod_small 1); auto. generalize exxs.(n_pos). auto with zarith. Qed. End NEll. Fixpoint plength (p: positive) : positive := match p with xH => xH | xO p1 => Psucc (plength p1) | xI p1 => Psucc (plength p1) end. Theorem plength_correct: forall p, (Zpos p < 2 ^ Zpos (plength p))%Z. assert (F: (forall p, 2 ^ (Zpos (Psucc p)) = 2 * 2 ^ Zpos p)%Z). intros p; replace (Zpos (Psucc p)) with (1 + Zpos p)%Z. rewrite Zpower_exp; auto with zarith. rewrite Zpos_succ_morphism; unfold Zsucc; auto with zarith. intros p; elim p; simpl plength; auto. intros p1 Hp1; rewrite F; repeat rewrite Zpos_xI. assert (tmp: (forall p, 2 * p = p + p)%Z); try repeat rewrite tmp; auto with zarith. intros p1 Hp1; rewrite F; rewrite (Zpos_xO p1). assert (tmp: (forall p, 2 * p = p + p)%Z); try repeat rewrite tmp; auto with zarith. rewrite Zpower_1_r; auto with zarith. Qed. Theorem plength_pred_correct: forall p, (Zpos p <= 2 ^ Zpos (plength (Ppred p))) %Z. intros p; case (Psucc_pred p); intros H1. subst; simpl plength. rewrite Zpower_1_r; auto with zarith. pattern p at 1; rewrite <- H1. rewrite Zpos_succ_morphism; unfold Zsucc; auto with zarith. generalize (plength_correct (Ppred p)); auto with zarith. Qed. Definition pheight p := plength (Ppred (plength (Ppred p))). Theorem pheight_correct: forall p, (Zpos p <= 2 ^ (2 ^ (Zpos (pheight p))))%Z. intros p; apply Zle_trans with (1 := (plength_pred_correct p)). apply Zpower_le_monotone; auto with zarith. split; auto with zarith. unfold pheight; apply plength_pred_correct. Qed. Definition isM2 p := match p with xH => false | xO _ => false | _ => true end. Lemma isM2_correct: forall p, if isM2 p then ~(Zdivide 2 p) /\ 2 < p else True. Proof. intros p; case p; simpl; auto; clear p. intros p1; split; auto. intros HH; inversion_clear HH. generalize H; rewrite Zmult_comm. case x; simpl; intros; discriminate. case p1; red; simpl; auto. Qed. Definition ell_test (N S: positive) (l: List.list (positive * positive)) (A B x y: Z) := let op := cmk_op (Peano.pred (nat_of_P (get_height 31 (plength N)))) in let mop := make_mod_op op (ZnZ.of_Z N) in if isM2 N then match (4 * N) ?= (ZEll.Zmullp l - 1) ^ 2 with Lt => match y ^ 2 mod N ?= (x ^ 3 + A * x + B) mod N with Eq => let ex := mkEx N S l A B x y in let a := ntriple (Z2z ex op x) (Z2z ex op y) (Z2z ex op 1) in let A := (Z2z ex op A) in let B := (Z2z ex op B) in let d4 := (Z2z ex op 4) in let d27 := (Z2z ex op 27) in let da := mop.(add_mod) in let dm := mop.(mul_mod) in let isc := (da (dm (dm (dm d4 A) A) A) (dm (dm d27 B) B)) in let (a1, sc1) := scal ex op mop isc a S in let (S1,R1) := ZEll.psplit l in let (a2, sc2) := scal ex op mop sc1 a1 S1 in let (a3, sc3) := scalL ex op mop sc2 a2 R1 in match a3 with nzero => if (Zeq_bool (Zgcd (z2Z op sc3) N) 1) then true else false | _ => false end | _ => false end | _ => false end else false. Lemma Zcompare_correct: forall x y, match x ?= y with Eq => x = y | Gt => x > y | Lt => x < y end. Proof. intros x y; unfold Zlt, Zgt; generalize (Zcompare_Eq_eq x y); case Zcompare; auto. Qed. Lemma ell_test_correct: forall (N S: positive) (l: List.list (positive * positive)) (A B x y: Z), (forall p, List.In p l -> prime (fst p)) -> if ell_test N S l A B x y then prime N else True. intros N S1 l A1 B1 x y H; unfold ell_test. generalize (isM2_correct N); case isM2; auto. intros (H1, H2). match goal with |- context[?x ?= ?y] => generalize (Zcompare_correct x y); case Zcompare; auto end; intros H3. match goal with |- context[?x ?= ?y] => generalize (Zcompare_correct x y); case Zcompare; auto end; intros H4. set (n := Peano.pred (nat_of_P (get_height 31 (plength N)))). set (op := cmk_op n). set (mop := make_mod_op op (ZnZ.of_Z N)). set (exx := mkEx N S1 l A1 B1 x y). set (op_spec := cmk_spec n). assert (exxs: ex_spec exx). constructor; auto. assert (H0: N < base (ZnZ.digits op)). apply Zlt_le_trans with (1 := plength_correct N). unfold op, base. rewrite cmk_op_digits. apply Zpower_le_monotone; split; auto with zarith. generalize (get_height_correct 31 (plength N)); unfold n. set (p := plength N). replace (Z_of_nat (Peano.pred (nat_of_P (get_height 31 p)))) with ((Zpos (get_height 31 p) - 1) ); auto with zarith. rewrite pred_of_minus; rewrite inj_minus1; auto with zarith. rewrite <- Zpos_eq_Z_of_nat_o_nat_of_P; auto with zarith. generalize (lt_O_nat_of_P (get_height 31 p)); auto with zarith. assert (mspec: mod_spec op (zN exx op) mop). unfold mop; apply make_mod_spec; auto. rewrite ZnZ.of_Z_correct; auto with zarith. generalize (@scalL_prime exx exxs _ op (cmk_spec n) mop mspec H0). lazy zeta. unfold c1, A, B, nplus, nmul; simpl exx.(vA); simpl exx.(vB); simpl exx.(vx); simpl exx.(vy); simpl exx.(vS); simpl exx.(vR); simpl exx.(vN). case scal; intros a1 sc1. case ZEll.psplit; intros S2 R2. case scal; intros a2 sc2. case scalL; intros a3 sc3. case a3; auto. case Zeq_bool; auto. Qed. Time Eval vm_compute in (ell_test 329719147332060395689499 8209062 (List.cons (40165264598163841%positive,1%positive) List.nil) (-94080) 9834496 0 3136). Time Eval vm_compute in (ell_test 1384435372850622112932804334308326689651568940268408537 13077052794 (List.cons (105867537178241517538435987563198410444088809%positive, 1%positive) List.nil) (-677530058123796416781392907869501000001421915645008494) 0 (-169382514530949104195348226967375250000355478911252124) 1045670343788723904542107880373576189650857982445904291 ).