(*************************************************************) (* This file is distributed under the terms of the *) (* GNU Lesser General Public License Version 2.1 *) (*************************************************************) (* Benjamin.Gregoire@inria.fr Laurent.Thery@inria.fr *) (*************************************************************) Set Implicit Arguments. Require Import DoubleBase DoubleSub DoubleMul DoubleSqrt DoubleLift DoubleDivn1 DoubleDiv. Require Import CyclicAxioms DoubleCyclic BigN Cyclic31. Require Import ZArith ZCAux. Import CyclicAxioms DoubleType DoubleBase. Theorem Zpos_pos: forall x, 0 < Zpos x. red; simpl; auto. Qed. Hint Resolve Zpos_pos: zarith. Section Mod_op. Variable w : Type. Record mod_op : Type := mk_mod_op { succ_mod : w -> w; add_mod : w -> w -> w; pred_mod : w -> w; sub_mod : w -> w -> w; mul_mod : w -> w -> w; square_mod : w -> w; power_mod : w -> positive -> w }. Variable w_op : ZnZ.Ops w. Let w_digits := w_op.(ZnZ.digits). Let w_zdigits := w_op.(ZnZ.zdigits). Let w_to_Z := (@ZnZ.to_Z _ w_op). Let w_of_pos := (@ZnZ.of_pos _ w_op). Let w_head0 := (@ZnZ.head0 _ w_op). Let w0 := (@ZnZ.zero _ w_op). Let w1 := (@ZnZ.one _ w_op). Let wBm1 := (@ZnZ.minus_one _ w_op). Let wWW := (@ZnZ.WW _ w_op). Let wW0 := (@ZnZ.WO _ w_op). Let w0W := (@ZnZ.OW _ w_op). Let w_compare := (@ZnZ.compare _ w_op). Let w_opp_c := (@ZnZ.opp_c _ w_op). Let w_opp := (@ZnZ.opp _ w_op). Let w_opp_carry := (@ZnZ.opp_carry _ w_op). Let w_succ := (@ZnZ.succ _ w_op). Let w_succ_c := (@ZnZ.succ_c _ w_op). Let w_add_c := (@ZnZ.add_c _ w_op). Let w_add_carry_c := (@ZnZ.add_carry_c _ w_op). Let w_add := (@ZnZ.add _ w_op). Let w_pred_c := (@ZnZ.pred_c _ w_op). Let w_sub_c := (@ZnZ.sub_c _ w_op). Let w_sub_carry := (@ZnZ.sub_carry _ w_op). Let w_sub_carry_c := (@ZnZ.sub_carry_c _ w_op). Let w_sub := (@ZnZ.sub _ w_op). Let w_pred := (@ZnZ.pred _ w_op). Let w_mul_c := (@ZnZ.mul_c _ w_op). Let w_mul := (@ZnZ.mul _ w_op). Let w_square_c := (@ZnZ.square_c _ w_op). Let w_div21 := (@ZnZ.div21 _ w_op). Let w_add_mul_div := (@ZnZ.add_mul_div _ w_op). Variable b : w. (* b should be > 1 *) Let n := w_head0 b. Let b2n := w_add_mul_div n b w0. Let bm1 := w_sub b w1. Let mb := w_opp b. Let wwb := WW w0 b. Let low x := match x with WW _ x => x | W0 => w0 end. Let w_add2 x y := match w_add_c x y with C0 n => WW w0 n |C1 n => WW w1 n end. Let ww_zdigits := w_add2 w_zdigits w_zdigits. Let ww_compare := Eval lazy beta delta [ww_compare] in ww_compare w0 w_compare. Let ww_sub := Eval lazy beta delta [ww_sub] in ww_sub w0 wWW w_opp_c w_opp_carry w_sub_c w_opp w_sub w_sub_carry. Let ww_add_mul_div := Eval lazy beta delta [ww_add_mul_div] in ww_add_mul_div w0 wWW wW0 w0W ww_compare w_add_mul_div ww_sub w_zdigits low (w0W n). Let ww_lsl_n := Eval lazy beta delta [ww_add_mul_div] in fun ww => ww_add_mul_div ww W0. Let w_lsr_n w := w_add_mul_div (w_sub w_zdigits n) w0 w. Open Scope Z_scope. Notation "[| x |]" := (@ZnZ.to_Z _ w_op x) (at level 0, x at level 99). Notation "[[ x ]]" := (@ww_to_Z _ w_digits w_to_Z x) (at level 0, x at level 99). Section Mod_spec. Variable m_op : mod_op. Record mod_spec : Prop := mk_mod_spec { succ_mod_spec : forall w t, [|w|]= t mod [|b|] -> [|succ_mod m_op w|] = ([|w|] + 1) mod [|b|]; add_mod_spec : forall w1 w2 t1 t2, [|w1|]= t1 mod [|b|] -> [|w2|]= t2 mod [|b|] -> [|add_mod m_op w1 w2|] = ([|w1|] + [|w2|]) mod [|b|]; pred_mod_spec : forall w t, [|w|]= t mod [|b|] -> [|pred_mod m_op w|] = ([|w|] - 1) mod [|b|]; sub_mod_spec : forall w1 w2 t1 t2, [|w1|]= t1 mod [|b|] -> [|w2|]= t2 mod [|b|] -> [|sub_mod m_op w1 w2|] = ([|w1|] - [|w2|]) mod [|b|]; mul_mod_spec : forall w1 w2 t1 t2, [|w1|]= t1 mod [|b|] -> [|w2|]= t2 mod [|b|] -> [|mul_mod m_op w1 w2|] = ([|w1|] * [|w2|]) mod [|b|]; square_mod_spec : forall w t, [|w|]= t mod [|b|] -> [|square_mod m_op w|] = ([|w|] * [|w|]) mod [|b|]; power_mod_spec : forall w t p, [|w|]= t mod [|b|] -> [|power_mod m_op w p|] = (Zpower_pos [|w|] p) mod [|b|] (* shift_spec : forall w p, wf w -> [|shift m_op w p|] = ([|w|] / (Zpower_pos 2 p)) mod [|b|]; trunc_spec : forall w p, wf w -> [|power_mod m_op w p|] = ([|w1|] mod (Zpower_pos 2 p)) mod [|b|] *) }. End Mod_spec. Hypothesis b_pos: 1 < [|b|]. Variable op_spec: ZnZ.Specs w_op. Lemma Zpower_n: 0 < 2 ^ [|n|]. apply Zpower_gt_0; auto with zarith. case (ZnZ.spec_to_Z n); auto with zarith. Qed. Hint Resolve Zpower_n Zmult_lt_0_compat Zpower_gt_0. Variable m_op : mod_op. Hint Rewrite ZnZ.spec_0 ZnZ.spec_1 ZnZ.spec_m1 ZnZ.spec_WW ZnZ.spec_opp_c ZnZ.spec_opp ZnZ.spec_opp_carry ZnZ.spec_succ_c ZnZ.spec_add_c ZnZ.spec_add_carry_c ZnZ.spec_add ZnZ.spec_pred_c ZnZ.spec_sub_c ZnZ.spec_sub_carry_c ZnZ.spec_sub ZnZ.spec_mul_c ZnZ.spec_mul : w_rewrite. Let _succ_mod x := let res :=w_succ x in match w_compare res b with | Lt => res | _ => w0 end. Let split x := match x with | W0 => (w0,w0) | WW h l => (h,l) end. Let _w0_is_0: [|w0|] = 0. unfold ZnZ.to_Z; rewrite <- ZnZ.spec_0; auto. Qed. Let _w1_is_1: [|w1|] = 1. unfold ZnZ.to_Z; rewrite <-ZnZ.spec_1; simpl; auto. Qed. Theorem Zmod_plus_one: forall a1 b1, 0 < b1 -> (a1 + b1) mod b1 = a1 mod b1. intros a1 b1 H; rewrite Zplus_mod; auto with zarith. rewrite Z_mod_same; try rewrite Zplus_0_r; auto with zarith. apply Zmod_mod; auto. Qed. Theorem Zmod_minus_one: forall a1 b1, 0 < b1 -> (a1 - b1) mod b1 = a1 mod b1. intros a1 b1 H; rewrite Zminus_mod; auto with zarith. rewrite Z_mod_same; try rewrite Zminus_0_r; auto with zarith. apply Zmod_mod; auto. Qed. Lemma without_c_b: forall w2, [|w2|] < [|b|] -> [|w_succ w2|] = [|w2|] + 1. intros w2 H. unfold w_succ;rewrite ZnZ.spec_succ. rewrite Zmod_small;auto. assert (HH := ZnZ.spec_to_Z w2). assert (HH' := ZnZ.spec_to_Z b);auto with zarith. Qed. Lemma _succ_mod_spec: forall w t, [|w|]= t mod [|b|] -> [|_succ_mod w|] = ([|w|] + 1) mod [|b|]. intros w2 t H; unfold _succ_mod, w_compare; simpl. assert (F: [|w2|] < [|b|]). case (Z_mod_lt t [|b|]); auto with zarith. rewrite ZnZ.spec_compare; case Zcompare_spec; intros H1; match goal with H: context[w_succ _] |- _ => generalize H; clear H; rewrite (without_c_b _ F); intros H1; auto with zarith end. rewrite H1, Z_mod_same, _w0_is_0; auto with zarith. rewrite Zmod_small; auto with zarith. case (ZnZ.spec_to_Z w2); auto with zarith. Qed. Let _add_mod x y := match w_add_c x y with | C0 z => match w_compare z b with | Lt => z | Eq => w0 | Gt => w_sub z b end | C1 z => w_add mb z end. Lemma _add_mod_correct: forall w1 w2, [|w1|] + [|w2|] < 2 * [|b|] -> [|_add_mod w1 w2|] = ([|w1|] + [|w2|]) mod [|b|]. intros w2 w3; unfold _add_mod, w_compare, w_add_c; intros H. match goal with |- context[ZnZ.add_c ?x ?y] => generalize (ZnZ.spec_add_c x y); unfold interp_carry; case (ZnZ.add_c x y); autorewrite with w_rewrite end; auto with zarith. intros w4 H2. rewrite ZnZ.spec_compare; case Zcompare_spec; intros H1; match goal with H: context[b] |- _ => generalize H; clear H; intros H1; rewrite <-H2; auto with zarith end. rewrite H1, Z_mod_same; auto with zarith. rewrite Zmod_small; auto with zarith. case (ZnZ.spec_to_Z w4); auto with zarith. assert (F1: 0 < [|w4|] - [|b|]); auto with zarith. assert (F2: [|w4|] < [|b|] + [|b|]); auto with zarith. autorewrite with w_rewrite; auto. rewrite (fun x y => Zmod_small (x - y)); auto with zarith. rewrite <- (Zmod_minus_one [|w4|]); auto with zarith. apply sym_equal; apply Zmod_small; auto with zarith. split; auto with zarith. apply Zlt_trans with [|b|]; auto with zarith. case (ZnZ.spec_to_Z b); unfold base; auto with zarith. rewrite Zmult_1_l; intros w4 H2; rewrite <- H2. unfold mb, w_add; rewrite ZnZ.spec_add; auto with zarith. assert (F1: [|w4|] < [|b|]). assert (F2: base (ZnZ.digits w_op) + [|w4|] < base (ZnZ.digits w_op) + [|b|]); auto with zarith. rewrite H2. apply Zlt_trans with ([|b|] +[|b|]); auto with zarith. apply Zplus_lt_compat_r; auto with zarith. case (ZnZ.spec_to_Z b); auto with zarith. assert (F2: [|b|] < base (ZnZ.digits w_op) + [|w4|]); auto with zarith. apply Zlt_le_trans with (base (ZnZ.digits w_op)); auto with zarith. case (ZnZ.spec_to_Z b); auto with zarith. case (ZnZ.spec_to_Z w4); auto with zarith. assert (F3: base (ZnZ.digits w_op) + [|w4|] < [|b|] + [|b|]); auto with zarith. rewrite <- (fun x => Zmod_minus_one (base x + [|w4|])); auto with zarith. rewrite (fun x y => Zmod_small (x - y)); auto with zarith. unfold w_opp;rewrite (ZnZ.spec_opp b). rewrite <- (fun x => Zmod_plus_one (-x)); auto with zarith. rewrite (Zmod_small (- [|b|] + base (ZnZ.digits w_op)));auto with zarith. 2 : assert (HHH := ZnZ.spec_to_Z b);auto with zarith. repeat rewrite Zmod_small; auto with zarith. Qed. Lemma _add_mod_spec: forall w1 w2 t1 t2, [|w1|] = t1 mod [|b|] -> [|w2|] = t2 mod [|b|] -> [|_add_mod w1 w2|] = ([|w1|] + [|w2|]) mod [|b|]. intros w2 w3 t1 t2 H H1. apply _add_mod_correct; auto with zarith. assert (F: [|w2|] < [|b|]). case (Z_mod_lt t1 [|b|]); auto with zarith. assert (F': [|w3|] < [|b|]). case (Z_mod_lt t2 [|b|]); auto with zarith. assert (tmp: forall x, 2 * x = x + x); auto with zarith. Qed. Let _pred_mod x := match w_compare w0 x with | Eq => bm1 | _ => w_pred x end. Lemma _pred_mod_spec: forall w t, [|w|] = t mod [|b|] -> [|_pred_mod w|] = ([|w|] - 1) mod [|b|]. intros w2 t H; unfold _pred_mod, w_compare, bm1; simpl. assert (F: [|w2|] < [|b|]). case (Z_mod_lt t [|b|]); auto with zarith. rewrite ZnZ.spec_compare; case Zcompare_spec; intros H1; match goal with H: context[w2] |- _ => generalize H; clear H; intros H1; autorewrite with w_rewrite; auto with zarith end; try rewrite _w0_is_0; try rewrite _w1_is_1; auto with zarith. rewrite <- H1, _w0_is_0; simpl. rewrite <- (Zmod_plus_one (-1)); auto with zarith. repeat rewrite Zmod_small; auto with zarith. case (ZnZ.spec_to_Z b); auto with zarith. unfold w_pred;rewrite ZnZ.spec_pred; auto. assert (HHH := ZnZ.spec_to_Z b);repeat rewrite Zmod_small;auto with zarith. intros;assert (HHH := ZnZ.spec_to_Z w2);auto with zarith. Qed. Let _sub_mod x y := match w_sub_c x y with | C0 z => z | C1 z => w_add z b end. Lemma _sub_mod_spec: forall w1 w2 t1 t2, [|w1|] = t1 mod [|b|] -> [|w2|] = t2 mod [|b|] -> [|_sub_mod w1 w2|] = ([|w1|] - [|w2|]) mod [|b|]. intros w2 w3 t1 t2; unfold _sub_mod, w_compare, w_sub_c; intros H H1. assert (F: [|w2|] < [|b|]). case (Z_mod_lt t1 [|b|]); auto with zarith. assert (F': [|w3|] < [|b|]). case (Z_mod_lt t2 [|b|]); auto with zarith. match goal with |- context[ZnZ.sub_c ?x ?y] => generalize (ZnZ.spec_sub_c x y); unfold interp_carry; case (ZnZ.sub_c x y); autorewrite with w_rewrite end; auto with zarith. intros w4 H2. rewrite Zmod_small; auto with zarith. split; auto with zarith. rewrite <- H2; case (ZnZ.spec_to_Z w4); auto with zarith. apply Zle_lt_trans with [|w2|]; auto with zarith. case (ZnZ.spec_to_Z w3); auto with zarith. intros w4 H2; rewrite <- H2. unfold w_add; rewrite ZnZ.spec_add; auto with zarith. case (ZnZ.spec_to_Z w4); intros F1 F2. assert (F3: 0 <= - 1 * base (ZnZ.digits w_op) + [|w4|] + [|b|]); auto with zarith. rewrite H2. case (ZnZ.spec_to_Z w3); case (ZnZ.spec_to_Z w2); auto with zarith. rewrite <- (fun x => Zmod_minus_one ([|w4|] + x)); auto with zarith. rewrite <- (fun x y => Zmod_plus_one (-y + x)); auto with zarith. repeat rewrite Zmod_small; auto with zarith. case (ZnZ.spec_to_Z b); auto with zarith. Qed. Let _mul_mod x y := let xy := w_mul_c x y in match ww_compare xy wwb with | Lt => snd (split xy) | Eq => w0 | Gt => let xy2n := ww_lsl_n xy in let (h,l) := split xy2n in let (q,r) := w_div21 h l b2n in w_lsr_n r end. Theorem high_zero:forall x, [[x]] < base w_digits -> [|fst (split x)|] = 0. intros x; case x; simpl; auto. intros xh xl H; case (Zle_lt_or_eq 0 [|xh|]); auto with zarith. case (ZnZ.spec_to_Z xh); auto with zarith. intros H1; contradict H; apply Zle_not_lt. assert (HHHH := wB_pos w_digits). unfold w_to_Z. match goal with |- ?X <= ?Y + ?Z => pattern X at 1; rewrite <- (Zmult_1_l X); auto with zarith; apply Zle_trans with Y; auto with zarith end. case (ZnZ.spec_to_Z xl); auto with zarith. Qed. Theorem n_spec: base (ZnZ.digits w_op) / 2 <= 2 ^ [|n|] * [|b|] < base (ZnZ.digits w_op). unfold n, w_head0; apply (ZnZ.spec_head0); auto with zarith. Qed. Theorem b2n_spec: [|b2n|] = 2 ^ [|n|] * [|b|]. unfold b2n, w_add_mul_div; case n_spec; intros Hp Hp1. assert (F1: [|n|] < Zpos (ZnZ.digits w_op)). case (Zle_or_lt (Zpos (ZnZ.digits w_op)) [|n|]); auto with zarith. intros H1; contradict Hp1; apply Zle_not_lt; unfold base. apply Zle_trans with (2 ^ [|n|] * 1); auto with zarith. rewrite Zmult_1_r; apply Zpower_le_monotone; auto with zarith. rewrite ZnZ.spec_add_mul_div; auto with zarith. rewrite _w0_is_0; rewrite Zdiv_0_l; auto with zarith. rewrite Zplus_0_r; rewrite Zmult_comm; apply Zmod_small; auto with zarith. Qed. Theorem ww_lsl_n_spec: forall w, [[w]] < [|b|] * [|b|] -> [[ww_lsl_n w]] = 2 ^ [|n|] * [[w]]. intros w2 H; unfold ww_lsl_n. case n_spec; intros Hp Hp1. assert (F0: forall x, 2 * x = x + x); auto with zarith. assert (F1: [|n|] < Zpos (ZnZ.digits w_op)). case (Zle_or_lt (Zpos (ZnZ.digits w_op)) [|n|]); auto. intros H1; contradict Hp1; apply Zle_not_lt; unfold base. apply Zle_trans with (2 ^ [|n|] * 1); auto with zarith. rewrite Zmult_1_r; apply Zpower_le_monotone; auto with zarith. assert (F2: [|n|] < Zpos (xO (ZnZ.digits w_op))). rewrite (Zpos_xO (ZnZ.digits w_op)); rewrite F0; auto with zarith. pattern [|n|]; rewrite <- Zplus_0_r; auto with zarith. apply Zplus_lt_compat; auto with zarith. change ([[DoubleLift.ww_add_mul_div w0 wWW wW0 w0W ww_compare w_add_mul_div ww_sub w_zdigits low (w0W n) w2 W0]] = 2 ^ [|n|] * [[w2]]). rewrite (DoubleLift.spec_ww_add_mul_div ); auto with zarith. 2: apply ZnZ.spec_to_Z; auto. 2: refine (spec_ww_to_Z _ _ _); auto. 2: apply ZnZ.spec_to_Z; auto. 2: apply ZnZ.spec_WW; auto. 2: apply ZnZ.spec_WO; auto. 2: apply ZnZ.spec_OW; auto. 2: refine (spec_ww_compare _ _ _ _ _ _ _); auto. 2: apply ZnZ.spec_to_Z; auto. 2: apply ZnZ.spec_compare; auto. 2: apply ZnZ.spec_add_mul_div; auto. 2: refine (spec_ww_sub _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _); auto. 2: apply ZnZ.spec_to_Z; auto. 2: apply ZnZ.spec_WW; auto. 2: apply ZnZ.spec_opp_c; auto. 2: apply ZnZ.spec_opp; auto. 2: apply ZnZ.spec_opp_carry; auto. 2: apply ZnZ.spec_sub_c; auto. 2: apply ZnZ.spec_sub; auto. 2: apply ZnZ.spec_sub_carry; auto. 2: apply ZnZ.spec_zdigits; auto. replace ([[w0W n]]) with [|n|]. change [[W0]] with 0. rewrite Zdiv_0_l; auto with zarith. rewrite Zplus_0_r; rewrite Zmod_small; auto with zarith. split; auto with zarith. case spec_ww_to_Z with (w_digits := w_digits) (w_to_Z := w_to_Z) (x:=w2); auto with zarith. apply ZnZ.spec_to_Z; auto. apply Zlt_trans with ([|b|] * [|b|] * 2 ^ [|n|]); auto with zarith. apply Zmult_lt_compat_r; auto with zarith. rewrite <- Zmult_assoc. unfold base; unfold base in Hp. unfold ww_digits,w_digits;rewrite (Zpos_xO (ZnZ.digits w_op)); rewrite F0; auto with zarith. rewrite Zpower_exp; auto with zarith. apply Zmult_lt_compat; auto with zarith. case (ZnZ.spec_to_Z b); auto with zarith. split; auto with zarith. rewrite Zmult_comm; auto with zarith. unfold w_digits;auto with zarith. generalize (ZnZ.spec_OW n). unfold ww_to_Z, w_digits; auto. intros x; case x; simpl. unfold w_to_Z, w_digits, w0; rewrite ZnZ.spec_0; auto. intros w3 w4; rewrite Zplus_comm. rewrite Z_mod_plus; auto with zarith. rewrite Zmod_small; auto with zarith. case (ZnZ.spec_to_Z w4); auto with zarith. unfold base; auto with zarith. unfold ww_to_Z, w_digits, w_to_Z, w0W; auto. rewrite ZnZ.spec_OW; auto with zarith. Qed. Theorem w_lsr_n_spec: forall w, [|w|] < 2 ^ [|n|] * [|b|]-> [|w_lsr_n w|] = [|w|] / 2 ^ [|n|]. intros w2 H. case (ZnZ.spec_to_Z w2); intros U1 U2. unfold w_lsr_n, w_add_mul_div. rewrite ZnZ.spec_add_mul_div; auto with zarith. rewrite _w0_is_0; rewrite Zmult_0_l; auto with zarith. rewrite Zplus_0_l. autorewrite with w_rewrite; auto. rewrite (fun x y => Zmod_small (x - y)); auto with zarith. unfold w_zdigits; rewrite ZnZ.spec_zdigits; auto. assert (tmp: forall p q, p - (p - q) = q); intros; try ring; rewrite tmp; clear tmp; auto. rewrite Zmod_small; auto with zarith. split; auto with zarith. apply Zle_lt_trans with (2 := U2); auto with zarith. apply Zdiv_le_upper_bound; auto with zarith. apply Zle_trans with ([|w2|] * (2 ^ 0)); auto with zarith. simpl Zpower; rewrite Zmult_1_r; auto with zarith. apply Zmult_le_compat_l; auto with zarith. apply Zpower_le_monotone; auto with zarith. case (ZnZ.spec_to_Z n); auto with zarith. unfold n. assert (HH: 0 < [|b|]); auto with zarith. split. case (Zle_or_lt [|w_head0 b|] [|w_zdigits|]); auto with zarith. unfold w_zdigits; rewrite ZnZ.spec_zdigits; auto; intros H1. case (ZnZ.spec_head0 b HH); intros _ H2; contradict H2. apply Zle_not_lt; unfold base. apply Zle_trans with (2^[|ZnZ.head0 b|] * 1); auto with zarith. rewrite Zmult_1_r; apply Zpower_le_monotone; auto with zarith. unfold w_zdigits; rewrite ZnZ.spec_zdigits; auto. apply Zle_lt_trans with (Zpos (ZnZ.digits w_op)); auto with zarith. case (ZnZ.spec_to_Z (w_head0 b)); auto with zarith. unfold base; apply Zpower2_lt_lin; auto with zarith. autorewrite with w_rewrite; auto. rewrite Zmod_small; auto with zarith. unfold w_zdigits; rewrite ZnZ.spec_zdigits; auto with zarith. case (ZnZ.spec_to_Z n); auto with zarith. unfold w_zdigits; rewrite ZnZ.spec_zdigits; auto. split; auto with zarith. case (Zle_or_lt [|n|] (Zpos (ZnZ.digits w_op))); auto with zarith; intros H1. case (ZnZ.spec_head0 b); auto with zarith; intros _ H2. contradict H2; apply Zle_not_lt; auto with zarith. unfold base; apply Zle_trans with (2 ^ [|ZnZ.head0 b|] * 1); auto with zarith. rewrite Zmult_1_r; unfold base; apply Zpower_le_monotone; auto with zarith. apply Zle_lt_trans with (Zpos (ZnZ.digits w_op)); auto with zarith. case (ZnZ.spec_to_Z n); auto with zarith. unfold base; apply Zpower2_lt_lin; auto with zarith. Qed. Lemma split_correct: forall x, let (xh, xl) := split x in [[WW xh xl]] = [[x]]. intros x; case x; simpl; unfold w0, w_to_Z;try rewrite ZnZ.spec_0; auto with zarith. Qed. Lemma _mul_mod_spec: forall w1 w2 t1 t2, [|w1|] = t1 mod [|b|] -> [|w2|] = t2 mod [|b|] -> [|_mul_mod w1 w2|] = ([|w1|] * [|w2|]) mod [|b|]. intros w2 w3 t1 t2 H H1; unfold _mul_mod, wwb. assert (F: [|w2|] < [|b|]). case (Z_mod_lt t1 [|b|]); auto with zarith. assert (F': [|w3|] < [|b|]). case (Z_mod_lt t2 [|b|]); auto with zarith. match goal with |- context[ww_compare ?x ?y] => change (ww_compare x y) with (DoubleBase.ww_compare w0 w_compare x y) end. rewrite (@spec_ww_compare w w0 w_digits w_to_Z w_compare ZnZ.spec_0 ZnZ.spec_to_Z ZnZ.spec_compare (w_mul_c w2 w3) (WW w0 b)); case Zcompare_spec; intros H2; match goal with H: context[w_mul_c] |- _ => generalize H; clear H end; try rewrite _w0_is_0; try rewrite !_w1_is_1; auto with zarith. unfold w_mul_c, ww_to_Z, w_to_Z, w_digits; rewrite ZnZ.spec_mul_c; auto with zarith. simpl; rewrite _w0_is_0, Zmult_0_l, Zplus_0_l. intros H2; rewrite H2; simpl. rewrite Z_mod_same; auto with zarith. generalize (high_zero (w_mul_c w2 w3)). unfold w_mul_c; generalize (ZnZ.spec_mul_c w2 w3); case (ZnZ.mul_c w2 w3); simpl; auto with zarith. intros H3 _ _; rewrite <- H3; autorewrite with w_rewrite; auto. (* rewrite Zmod_small; auto with zarith. *) intros w4 w5. change (w_to_Z w0) with [|w0|]; rewrite _w0_is_0. change (w_to_Z w4) with [|w4|]. change (w_to_Z w5) with [|w5|]. simpl. intros H2 H3 H4. assert (E1: [|w4|] = 0). apply H3; auto with zarith. apply Zlt_trans with (1 := H4). case (ZnZ.spec_to_Z b); auto with zarith. generalize H4 H2; rewrite E1; rewrite Zmult_0_l; rewrite Zplus_0_l; clear H4 H2; intros H4 H2. rewrite <- H2; rewrite Zmod_small; auto with zarith. case (ZnZ.spec_to_Z w5); auto with zarith. intros H2. match goal with |- context[split ?x] => generalize (split_correct x); case (split x); auto with zarith end. assert (F1: [[w_mul_c w2 w3]] < [|b|] * [|b|]). unfold w_to_Z, w_mul_c, ww_to_Z,w_digits; rewrite ZnZ.spec_mul_c; auto with zarith. apply Zmult_lt_compat; auto with zarith. case (ZnZ.spec_to_Z w2); auto with zarith. case (ZnZ.spec_to_Z w3); auto with zarith. intros w4 w5; rewrite ww_lsl_n_spec; auto with zarith. intros H3. unfold w_div21; match goal with |- context[ZnZ.div21 ?y ?z ?t] => generalize (ZnZ.spec_div21 y z t); case (ZnZ.div21 y z t) end. rewrite b2n_spec; case (n_spec); auto. intros H4 H5 w6 w7 H6. case H6; auto with zarith. case (Zle_or_lt (2 ^ [|n|] * [|b|]) [|w4|]); auto; intros H7. match type of H3 with ?X = ?Y => absurd (Y < X) end. apply Zle_not_lt; rewrite H3; auto with zarith. simpl ww_to_Z. match goal with |- ?X < ?Y + _ => apply Zlt_le_trans with Y; auto with zarith end. apply Zlt_trans with (2 ^ [|n|] * ([|b|] * [|b|])); auto with zarith. apply Zmult_lt_compat_l; auto with zarith. rewrite Zmult_assoc. apply Zmult_lt_compat2; auto with zarith. case (ZnZ.spec_to_Z b); auto with zarith. case (ZnZ.spec_to_Z w5); unfold w_to_Z;auto with zarith. clear H6; intros H7 H8. rewrite w_lsr_n_spec; auto with zarith. rewrite <- (Z_div_mult ([|w2|] * [|w3|]) (2 ^ [|n|])); auto with zarith; rewrite Zmult_comm. rewrite <- ZnZ.spec_mul_c; auto with zarith. unfold w_mul_c in H3; unfold ww_to_Z in H3;simpl H3. unfold w_digits,w_to_Z in H3. rewrite <- H3; simpl. rewrite H7; rewrite (fun x => Zmult_comm (2 ^ x)); rewrite Zmult_assoc; rewrite BigNumPrelude.Z_div_plus_l; auto with zarith. rewrite Zplus_mod; auto with zarith. rewrite Z_mod_mult; auto with zarith. rewrite Zplus_0_l; auto with zarith. rewrite Zmod_mod; auto with zarith. rewrite Zmod_small; auto with zarith. split; auto with zarith. apply Zdiv_lt_upper_bound; auto with zarith. rewrite Zmult_comm; auto with zarith. Qed. Let _square_mod x := let x2 := w_square_c x in match ww_compare x2 wwb with | Lt => snd (split x2) | Eq => w0 | Gt => let x2_2n := ww_lsl_n x2 in let (h,l) := split x2_2n in let (q,r) := w_div21 h l b2n in w_lsr_n r end. Lemma _square_mod_spec: forall w t, [|w|] = t mod [|b|] -> [|_square_mod w|] = ([|w|] * [|w|]) mod [|b|]. intros w2 t2 H; unfold _square_mod, wwb. assert (F: [|w2|] < [|b|]). case (Z_mod_lt t2 [|b|]); auto with zarith. match goal with |- context[ww_compare ?x ?y] => change (ww_compare x y) with (DoubleBase.ww_compare w0 w_compare x y) end. rewrite (@spec_ww_compare w w0 w_digits w_to_Z w_compare ZnZ.spec_0 ZnZ.spec_to_Z ZnZ.spec_compare); case Zcompare_spec; intros H2; match goal with H: context[w_square_c] |- _ => generalize H; clear H end; autorewrite with w_rewrite; try rewrite _w0_is_0; try rewrite !_w1_is_1; auto with zarith. unfold w_square_c, ww_to_Z, w_to_Z, w_digits; rewrite ZnZ.spec_square_c; auto with zarith. intros H2;rewrite H2; simpl. rewrite _w0_is_0; simpl. rewrite Z_mod_same; auto with zarith. generalize (high_zero (w_square_c w2)). unfold w_square_c; generalize (ZnZ.spec_square_c w2); case (ZnZ.square_c w2); simpl; auto with zarith. intros H3 _ _; rewrite <- H3; autorewrite with w_rewrite; auto. intros w4 w5. change (w_to_Z w0) with [|w0|]; rewrite _w0_is_0; simpl. change (w_to_Z w4) with [|w4|]. change (w_to_Z w5) with [|w5|]. intros H2 H3 H4. assert (E1: [|w4|] = 0). apply H3; auto with zarith. apply Zlt_trans with (1 := H4). case (ZnZ.spec_to_Z b); auto with zarith. generalize H4 H2; rewrite E1; rewrite Zmult_0_l; rewrite Zplus_0_l; clear H4 H2; intros H4 H2. rewrite <- H2; rewrite Zmod_small; auto with zarith. case (ZnZ.spec_to_Z w5); auto with zarith. intros H2. match goal with |- context[split ?x] => generalize (split_correct x); case (split x); auto with zarith end. assert (F1: [[w_square_c w2]] < [|b|] * [|b|]). unfold w_square_c, ww_to_Z, w_digits, w_to_Z. rewrite ZnZ.spec_square_c; auto with zarith. apply Zmult_lt_compat; auto with zarith. case (ZnZ.spec_to_Z w2); auto with zarith. case (ZnZ.spec_to_Z w2); auto with zarith. intros w4 w5; rewrite ww_lsl_n_spec; auto with zarith. intros H3. unfold w_div21; match goal with |- context[ZnZ.div21 ?y ?z ?t] => generalize (ZnZ.spec_div21 y z t); case (ZnZ.div21 y z t) end. rewrite b2n_spec; case (n_spec); auto. intros H4 H5 w6 w7 H6. case H6; auto with zarith. case (Zle_or_lt (2 ^ [|n|] * [|b|]) [|w4|]); auto; intros H7. match type of H3 with ?X = ?Y => absurd (Y < X) end. apply Zle_not_lt; rewrite H3; auto with zarith. simpl ww_to_Z. match goal with |- ?X < ?Y + _ => apply Zlt_le_trans with Y; auto with zarith end. apply Zlt_trans with (2 ^ [|n|] * ([|b|] * [|b|])); auto with zarith. apply Zmult_lt_compat_l; auto with zarith. rewrite Zmult_assoc. apply Zmult_lt_compat2; auto with zarith. case (ZnZ.spec_to_Z b); auto with zarith. unfold w_to_Z,w_digits;case (ZnZ.spec_to_Z w5); auto with zarith. clear H6; intros H7 H8. rewrite w_lsr_n_spec; auto with zarith. rewrite <- (Z_div_mult ([|w2|] * [|w2|]) (2 ^ [|n|])); auto with zarith; rewrite Zmult_comm. rewrite <- ZnZ.spec_square_c; auto with zarith. unfold w_square_c, ww_to_Z in H3; unfold w_digits,w_to_Z in H3. rewrite <- H3; simpl. rewrite H7; rewrite (fun x => Zmult_comm (2 ^ x)); rewrite Zmult_assoc; rewrite BigNumPrelude.Z_div_plus_l; auto with zarith. rewrite Zplus_mod; auto with zarith. rewrite Z_mod_mult; auto with zarith. rewrite Zplus_0_l; auto with zarith. rewrite Zmod_mod; auto with zarith. rewrite Zmod_small; auto with zarith. split; auto with zarith. apply Zdiv_lt_upper_bound; auto with zarith. rewrite Zmult_comm; auto with zarith. Qed. Let _power_mod := fix pow_mod (x:w) (p:positive) {struct p} : w := match p with | xH => x | xO p' => let pow := pow_mod x p' in _square_mod pow | xI p' => let pow := pow_mod x p' in _mul_mod (_square_mod pow) x end. Lemma _power_mod_spec: forall w t p, [|w|] = t mod [|b|] -> [|_power_mod w p|] = (Zpower_pos [|w|] p) mod [|b|]. intros w2 t p; elim p; simpl; auto with zarith. intros p' Rec H. assert (F: [|w2|] < [|b|]). case (Z_mod_lt t [|b|]); auto with zarith. replace (xI p') with (p' + p' + 1)%positive. repeat rewrite Zpower_pos_is_exp; auto with zarith. pose (t1 := [|_power_mod w2 p'|]). rewrite _mul_mod_spec with (t1 := t1 * t1) (t2 := t); auto with zarith. rewrite _square_mod_spec with (t := Zpower_pos [|w2|] p'); auto with zarith. rewrite Rec; auto with zarith. assert (tmp: forall p, Zpower_pos p 1 = p); try (rewrite tmp; clear tmp). intros p1; unfold Zpower_pos; simpl; ring. rewrite <- Zmult_mod; auto with zarith. rewrite Zmult_mod; auto with zarith. rewrite Zmod_mod; auto with zarith. rewrite <- Zmult_mod; auto with zarith. simpl; unfold t1; apply _square_mod_spec with (t := Zpower_pos [|w2|] p'); auto with zarith. rewrite xI_succ_xO; rewrite <- Pplus_diag. rewrite Pplus_one_succ_r; auto. intros p' Rec H. replace (xO p') with (p' + p')%positive. repeat rewrite Zpower_pos_is_exp; auto with zarith. rewrite _square_mod_spec with (t := Zpower_pos [|w2|] p'); auto with zarith. rewrite Rec; auto with zarith. rewrite <- Zmult_mod; auto with zarith. rewrite <- Pplus_diag; auto. intros H. assert (tmp: forall p, Zpower_pos p 1 = p); try (rewrite tmp; clear tmp). intros p1; unfold Zpower_pos; simpl; ring. rewrite Zmod_small; auto with zarith. assert (F: [|w2|] < [|b|]). case (Z_mod_lt t [|b|]); auto with zarith. case (ZnZ.spec_to_Z w2); auto with zarith. Qed. Definition make_mod_op := mk_mod_op _succ_mod _add_mod _pred_mod _sub_mod _mul_mod _square_mod _power_mod. Definition make_mod_spec: mod_spec make_mod_op. apply mk_mod_spec. exact _succ_mod_spec. exact _add_mod_spec. exact _pred_mod_spec. exact _sub_mod_spec. exact _mul_mod_spec. exact _square_mod_spec. exact _power_mod_spec. Defined. (*********** Mersenne special **********) Variable p: positive. Variable zp: w. Hypothesis zp_b: [|zp|] = Zpos p. Hypothesis p_lt_w_digits: Zpos p <= Zpos w_digits. Let p1 := Pminus (xO w_digits) p. Theorem p_p1: Zpos p + Zpos p1 = Zpos (xO w_digits). unfold p1. rewrite Zpos_minus; auto with zarith. rewrite Zmax_right; auto with zarith. rewrite Zpos_xO; auto with zarith. assert (0 < Zpos w_digits); auto with zarith. Qed. Let zp1 := ww_sub ww_zdigits (WW w0 zp). Let spec_add2: forall x y, [[w_add2 x y]] = [|x|] + [|y|]. unfold w_add2. intros xh xl; generalize (ZnZ.spec_add_c xh xl). unfold w_add_c; case ZnZ.add_c; unfold interp_carry; simpl ww_to_Z. intros w2 Hw2; simpl; unfold w_to_Z; rewrite Hw2. unfold w0; rewrite ZnZ.spec_0; simpl; auto with zarith. intros w2; rewrite Zmult_1_l; simpl. unfold w_to_Z, w1; rewrite ZnZ.spec_1; auto with zarith. rewrite Zmult_1_l; auto. Qed. Let spec_ww_digits: [[ww_zdigits]] = Zpos (xO w_digits). Proof. unfold w_to_Z, ww_zdigits. rewrite spec_add2. unfold w_to_Z, w_zdigits, w_digits. rewrite ZnZ.spec_zdigits; auto. rewrite Zpos_xO; auto with zarith. Qed. Let spec_ww_to_Z := (spec_ww_to_Z _ _ ZnZ.spec_to_Z). Let spec_ww_compare := spec_ww_compare _ _ _ _ ZnZ.spec_0 ZnZ.spec_to_Z ZnZ.spec_compare. Let spec_ww_sub := spec_ww_sub w0 zp wWW zp1 w_opp_c w_opp_carry w_sub_c w_opp w_sub w_sub_carry w_digits w_to_Z ZnZ.spec_0 ZnZ.spec_to_Z ZnZ.spec_WW ZnZ.spec_opp_c ZnZ.spec_opp ZnZ.spec_opp_carry ZnZ.spec_sub_c ZnZ.spec_sub ZnZ.spec_sub_carry. Theorem zp1_b: [[zp1]] = Zpos p1. change ([[DoubleSub.ww_sub w0 wWW w_opp_c w_opp_carry w_sub_c w_opp w_sub w_sub_carry ww_zdigits (WW w0 zp)]] = Zpos p1). rewrite spec_ww_sub; auto with zarith. rewrite spec_ww_digits; simpl ww_to_Z. change (w_to_Z w0) with [|w0|]. unfold w0; rewrite ZnZ.spec_0; autorewrite with rm10; auto. change (w_to_Z zp) with [|zp|]. rewrite zp_b. rewrite Zmod_small; auto with zarith. rewrite <- p_p1; auto with zarith. unfold ww_digits; split; auto with zarith. rewrite <- p_p1; auto with zarith. assert (0 < Zpos p1); auto with zarith. apply Zle_lt_trans with (Zpos (xO w_digits)); auto with zarith. assert (0 < Zpos p); auto with zarith. unfold base; apply Zpower2_lt_lin; auto with zarith. Qed. Hypothesis p_b: [|b|] = 2 ^ (Zpos p) - 1. Let w_pos_mod := ZnZ.pos_mod. Let add_mul_div := DoubleLift.ww_add_mul_div w0 wWW wW0 w0W ww_compare w_add_mul_div ww_sub w_zdigits low. Let _mmul_mod x y := let xy := w_mul_c x y in match xy with W0 => w0 | WW xh xl => let xl1 := w_pos_mod zp xl in match add_mul_div zp1 W0 xy with W0 => match w_compare xl1 b with | Lt => xl1 | Eq => w0 | Gt => w1 end | WW _ xl2 => _add_mod xl1 xl2 end end. Hint Unfold w_digits. Lemma WW_0: forall x y, [[WW x y]] = 0 -> [|x|] = 0 /\ [|y|] =0. intros x y; simpl; case (ZnZ.spec_to_Z x); intros H1 H2; case (ZnZ.spec_to_Z y); intros H3 H4 H5. case Zle_lt_or_eq with (1 := H1); clear H1; intros H1; auto with zarith. absurd (0 < [|x|] * base (ZnZ.digits w_op) + [|y|]); auto with zarith. unfold w_to_Z, w_digits in H5;auto with zarith. match goal with |- _ < ?X + _ => apply Zlt_le_trans with X; auto with zarith end. case Zle_lt_or_eq with (1 := H3); clear H3; intros H3; auto with zarith. absurd (0 < [|x|] * base (ZnZ.digits w_op) + [|y|]); auto with zarith. unfold w_to_Z, w_digits in H5;auto with zarith. rewrite <- H1; rewrite Zmult_0_l; auto with zarith. Qed. Theorem WW0_is_0: [[W0]] = 0. simpl; auto. Qed. Hint Rewrite WW0_is_0: w_rewrite. Theorem mmul_aux0: Zpos (xO w_digits) - Zpos p1 = Zpos p. unfold w_digits. apply trans_equal with (Zpos p + Zpos p1 - Zpos p1); auto with zarith. rewrite p_p1; auto with zarith. Qed. Theorem mmul_aux1: 2 ^ Zpos w_digits = 2 ^ (Zpos w_digits - Zpos p) * 2 ^ Zpos p. rewrite <- Zpower_exp; auto with zarith. eq_tac; auto with zarith. Qed. Theorem mmul_aux2:forall x, x mod (2 ^ Zpos p - 1) = ((x / 2 ^ Zpos p) + (x mod 2 ^ Zpos p)) mod (2 ^ Zpos p - 1). intros x; pattern x at 1; rewrite Z_div_mod_eq with (b := 2 ^ Zpos p); auto with zarith. match goal with |- (?X * ?Y + ?Z) mod (?X - 1) = ?T => replace (X * Y + Z) with (Y * (X - 1) + (Y + Z)); try ring end. rewrite Zplus_mod; auto with zarith. rewrite Z_mod_mult; auto with zarith. rewrite Zplus_0_l. rewrite Zmod_mod; auto with zarith. Qed. Theorem mmul_aux3:forall xh xl, [[WW xh xl]] mod (2 ^ Zpos p) = [|xl|] mod (2 ^ Zpos p). intros xh xl; simpl ww_to_Z; unfold base. rewrite Zplus_mod; auto with zarith. generalize mmul_aux1; unfold w_digits; intros tmp; rewrite tmp; clear tmp. rewrite Zmult_assoc. rewrite Z_mod_mult; auto with zarith. rewrite Zplus_0_l; apply Zmod_mod; auto with zarith. Qed. Let spec_low: forall x, [|low x|] = [[x]] mod base w_digits. intros x; case x; simpl low; auto with zarith. intros xh xl; simpl. rewrite Zplus_comm; rewrite Z_mod_plus; auto with zarith. rewrite Zmod_small; auto with zarith. case (ZnZ.spec_to_Z xl); auto with zarith. unfold base; auto with zarith. Qed. Theorem mmul_aux4:forall x, [[x]] < [|b|] * 2 ^ Zpos p -> match add_mul_div zp1 W0 x with W0 => 0 | WW _ xl2 => [|xl2|] end = [[x]] / 2 ^ Zpos p. intros x Hx. assert (Hp: [[zp1]] <= Zpos (xO w_digits)); auto with zarith. rewrite zp1_b; rewrite <- p_p1; auto with zarith. assert (0 <= Zpos p); auto with zarith. generalize (@DoubleLift.spec_ww_add_mul_div w w0 wWW wW0 w0W ww_compare w_add_mul_div ww_sub w_digits w_zdigits low w_to_Z ZnZ.spec_0 ZnZ.spec_to_Z spec_ww_to_Z ZnZ.spec_WW ZnZ.spec_WO ZnZ.spec_OW spec_ww_compare ZnZ.spec_add_mul_div spec_ww_sub ZnZ.spec_zdigits spec_low W0 x zp1 Hp). unfold add_mul_div; case DoubleLift.ww_add_mul_div; autorewrite with w_rewrite; auto. rewrite Zmult_0_l; rewrite Zplus_0_l. rewrite zp1_b. generalize mmul_aux0; unfold w_digits; intros tmp; rewrite tmp. rewrite Zmod_small; auto with zarith. split; auto with zarith. apply Z_div_pos; auto with zarith. case (spec_ww_to_Z x); auto with zarith. unfold base. apply Zdiv_lt_upper_bound; auto with zarith. rewrite <- Zpower_exp; auto with zarith. apply Zlt_le_trans with (base (ww_digits (ZnZ.digits w_op))); auto with zarith. case (spec_ww_to_Z x); auto with zarith. unfold base; apply Zpower_le_monotone; auto with zarith. split; auto with zarith. assert (0 < Zpos p); auto with zarith. intros w2 w3; rewrite Zmult_0_l; rewrite Zplus_0_l. rewrite zp1_b. generalize mmul_aux0; unfold w_digits; intros tmp; rewrite tmp; clear tmp. simpl ww_to_Z; rewrite Zmod_small; auto with zarith. intros H1; generalize (high_zero (WW w2 w3)); unfold w_digits;intros tmp; simpl fst in tmp; simpl ww_to_Z in tmp;auto with zarith. unfold w_to_Z in *. rewrite tmp in H1; auto with zarith. clear tmp. simpl ww_to_Z; rewrite H1; apply Zdiv_lt_upper_bound; auto with zarith. unfold base; rewrite <- Zpower_exp; auto with zarith. apply Zlt_le_trans with (1 := Hx). apply Zle_trans with (2 ^ Zpos p * 2 ^ Zpos p). rewrite p_b; apply Zmult_le_compat_r; auto with zarith. rewrite <- Zpower_exp; auto with zarith. apply Zpower_le_monotone; auto with zarith. split; auto with zarith. apply Z_div_pos; auto with zarith. case (spec_ww_to_Z x); auto with zarith. unfold base. apply Zdiv_lt_upper_bound; auto with zarith. rewrite <- Zpower_exp; auto with zarith. apply Zlt_le_trans with (base (ww_digits (ZnZ.digits w_op))); auto with zarith. case (spec_ww_to_Z x); auto with zarith. unfold base; apply Zpower_le_monotone; auto with zarith. split; auto with zarith. assert (0 < Zpos p); auto with zarith. Qed. Theorem mmul_aux5:forall xh xl, [[WW xh xl]] < [|b|] * 2 ^ Zpos p -> let xl1 := w_pos_mod zp xl in let r := match add_mul_div zp1 W0 (WW xh xl) with W0 => match w_compare xl1 b with | Lt => xl1 | Eq => w0 | Gt => w1 end | WW _ xl2 => _add_mod xl1 xl2 end in [|r|] = [[WW xh xl]] mod [|b|]. intros xh xl Hx xl1 r; unfold r; clear r. generalize (mmul_aux4 _ Hx). simpl ww_to_Z; rewrite p_b. rewrite mmul_aux2. assert (Hp: [[zp1]] <= Zpos (xO w_digits)); auto with zarith. rewrite zp1_b; rewrite <- p_p1; auto with zarith. assert (0 <= Zpos p); auto with zarith. generalize (@DoubleLift.spec_ww_add_mul_div w w0 wWW wW0 w0W ww_compare w_add_mul_div ww_sub w_digits w_zdigits low w_to_Z ZnZ.spec_0 ZnZ.spec_to_Z spec_ww_to_Z ZnZ.spec_WW ZnZ.spec_WO ZnZ.spec_OW spec_ww_compare ZnZ.spec_add_mul_div spec_ww_sub ZnZ.spec_zdigits spec_low W0 (WW xh xl) zp1 Hp). unfold add_mul_div; case DoubleLift.ww_add_mul_div; autorewrite with w_rewrite; auto. rewrite Zmult_0_l; rewrite Zplus_0_l. rewrite zp1_b. generalize mmul_aux0; unfold w_digits; intros tmp; rewrite tmp; clear tmp. intros H1 H2. rewrite <- H2. rewrite Zplus_0_l. generalize mmul_aux3; simpl ww_to_Z; intros tmp; rewrite tmp; clear tmp; auto with zarith. unfold xl1; unfold w_pos_mod. rewrite <- p_b; rewrite <- zp_b. rewrite <- ZnZ.spec_pos_mod; auto with zarith. unfold w_compare; rewrite ZnZ.spec_compare; case Zcompare_spec; intros Hc; match goal with H: context[b] |- _ => generalize H; clear H end; try rewrite _w0_is_0. intros H3; rewrite H3. rewrite Z_mod_same; auto with zarith. intros H3; rewrite Zmod_small; auto with zarith. case (ZnZ.spec_to_Z (ZnZ.pos_mod zp xl)); unfold w_to_Z; auto with zarith. rewrite p_b; rewrite ZnZ.spec_pos_mod; auto with zarith. intros H3; assert (HH: [|xl|] mod 2 ^ Zpos p = 2 ^ Zpos p). apply Zle_antisym; auto with zarith. case (Z_mod_lt ([|xl|]) (2 ^ Zpos p)); auto with zarith. rewrite zp_b in H3; auto with zarith. rewrite zp_b; rewrite HH. rewrite <- Zmod_minus_one; auto with zarith. rewrite _w1_is_1; rewrite Zmod_small; auto with zarith. rewrite Zmult_0_l; rewrite Zplus_0_l. rewrite zp1_b. generalize mmul_aux0; unfold w_digits; intros tmp; rewrite tmp; clear tmp. intros w2 w3 H1 H2; rewrite <- H2. generalize mmul_aux3; simpl ww_to_Z; intros tmp; rewrite tmp; clear tmp; auto with zarith. rewrite <- p_b; rewrite <- zp_b. rewrite <- ZnZ.spec_pos_mod; auto with zarith. unfold xl1; unfold w_pos_mod. rewrite Zplus_comm. apply _add_mod_correct; auto with zarith. assert (tmp: forall x, 2 * x = x + x); auto with zarith; rewrite tmp; apply Zplus_le_lt_compat; clear tmp; auto with zarith. rewrite ZnZ.spec_pos_mod; auto with zarith. rewrite p_b; case (Z_mod_lt [|xl|] (2 ^ Zpos p)); auto with zarith. rewrite zp_b; auto with zarith. rewrite H2; apply Zdiv_lt_upper_bound; auto with zarith. Qed. Lemma _mmul_mod_spec: forall w1 w2 t1 t2, [|w1|] = t1 mod [|b|] -> [|w2|] = t2 mod [|b|] -> [|_mmul_mod w1 w2|] = ([|w1|] * [|w2|]) mod [|b|]. intros w2 w3 t1 t2; unfold _mmul_mod, w_mul_c; intros H H1. assert (F: [|w2|] < [|b|]). case (Z_mod_lt t1 [|b|]); auto with zarith. assert (F': [|w3|] < [|b|]). case (Z_mod_lt t2 [|b|]); auto with zarith. match goal with |- context[ZnZ.mul_c ?x ?y] => generalize (ZnZ.spec_mul_c x y); unfold interp_carry; case (ZnZ.mul_c x y); autorewrite with w_rewrite end; auto with zarith. simpl; intros H2; rewrite <- H2; rewrite Zmod_small; auto with zarith. intros w4 w5 H2. rewrite mmul_aux5; auto with zarith. rewrite <- H2; auto. unfold ww_to_Z,w_digits,w_to_Z; rewrite H2. apply Zmult_lt_compat; auto with zarith. case (ZnZ.spec_to_Z w2); auto with zarith. case (ZnZ.spec_to_Z w3); auto with zarith. Qed. Let _msquare_mod x := let xy := w_square_c x in match xy with W0 => w0 | WW xh xl => let xl1 := w_pos_mod zp xl in match add_mul_div zp1 W0 xy with W0 => match w_compare xl1 b with | Lt => xl1 | Eq => w0 | Gt => w1 end | WW _ xl2 => _add_mod xl1 xl2 end end. Lemma _msquare_mod_spec: forall w1 t1, [|w1|] = t1 mod [|b|] -> [|_msquare_mod w1|] = ([|w1|] * [|w1|]) mod [|b|]. intros w2 t2; unfold _msquare_mod, w_square_c; intros H. assert (F: [|w2|] < [|b|]). case (Z_mod_lt t2 [|b|]); auto with zarith. match goal with |- context[ZnZ.square_c ?x] => generalize (ZnZ.spec_square_c x); unfold interp_carry; case (ZnZ.square_c x); autorewrite with w_rewrite end; auto with zarith. simpl; intros H2; rewrite <- H2; rewrite Zmod_small; auto with zarith. intros w4 w5 H2. rewrite mmul_aux5; auto with zarith. unfold ww_to_Z, w_to_Z ,w_digits; rewrite <- H2; auto. unfold ww_to_Z,w_to_Z ,w_digits; rewrite H2. apply Zmult_lt_compat; auto with zarith. case (ZnZ.spec_to_Z w2); auto with zarith. case (ZnZ.spec_to_Z w2); auto with zarith. Qed. Definition mmake_mod_op := mk_mod_op _succ_mod _add_mod _pred_mod _sub_mod _mmul_mod _msquare_mod _power_mod. Definition mmake_mod_spec: mod_spec mmake_mod_op. apply mk_mod_spec. exact _succ_mod_spec. exact _add_mod_spec. exact _pred_mod_spec. exact _sub_mod_spec. exact _mmul_mod_spec. exact _msquare_mod_spec. exact _power_mod_spec. Defined. End Mod_op.