(*************************************************************) (* This file is distributed under the terms of the *) (* GNU Lesser General Public License Version 2.1 *) (*************************************************************) (* Benjamin.Gregoire@inria.fr Laurent.Thery@inria.fr *) (*************************************************************) (********************************************************************** Proth.v Proth's Test Definition: ProthTest **********************************************************************) Require Import ZArith. Require Import ZCAux. Require Import Pocklington. Open Scope Z_scope. Theorem ProthTest: forall h k a, let n := h * 2 ^ k + 1 in 1 < a -> 0 < h < 2 ^k -> (a ^ ((n - 1) / 2) + 1) mod n = 0 -> prime n. intros h k a n; unfold n; intros H H1 H2. assert (Hu: 0 < h * 2 ^ k). apply Zmult_lt_O_compat; auto with zarith. assert (Hu1: 0 < k). case (Zle_or_lt k 0); intros Hv; auto. generalize H1 Hv; case k; simpl. intros (Hv1, Hv2); contradict Hv2; auto with zarith. intros p1 _ Hv1; contradict Hv1; auto with zarith. intros p (Hv1, Hv2); contradict Hv2; auto with zarith. apply PocklingtonCorollary1 with (F1 := 2 ^ k) (R1 := h); auto with zarith. ring. apply Zlt_le_trans with ((h + 1) * 2 ^ k); auto with zarith. rewrite Zmult_plus_distr_l; apply Zplus_lt_compat_l. rewrite Zmult_1_l; apply Zlt_le_trans with 2; auto with zarith. intros p H3 H4. generalize H2; replace (h * 2 ^ k + 1 - 1) with (h * 2 ^k); auto with zarith; clear H2; intros H2. exists a; split; auto; split. pattern (h * 2 ^k) at 1; rewrite (Zdivide_Zdiv_eq 2 (h * 2 ^ k)); auto with zarith. rewrite (Zmult_comm 2); rewrite Zpower_mult; auto with zarith. rewrite Zpower_mod; auto with zarith. assert (tmp: forall p, p = (p + 1) -1); auto with zarith; rewrite (fun x => (tmp (a ^ x))). rewrite Zminus_mod; auto with zarith. rewrite H2. rewrite (Zmod_small 1); auto with zarith. rewrite <- Zpower_mod; auto with zarith. rewrite Zmod_small; auto with zarith. simpl; unfold Zpower_pos; simpl; auto with zarith. apply Z_div_pos; auto with zarith. apply Zdivide_trans with (2 ^ k). apply Zpower_divide; auto with zarith. apply Zdivide_factor_l; auto with zarith. apply Zis_gcd_gcd; auto with zarith. apply Zis_gcd_intro; auto with zarith. intros x HD1 HD2. assert (Hd1: p = 2). apply prime_div_Zpower_prime with (4 := H4); auto with zarith. apply prime_2. assert (Hd2: (x | 2)). replace 2 with ((a ^ (h * 2 ^ k / 2) + 1) - (a ^ (h * 2 ^ k/ 2) - 1)); auto with zarith. apply Zdivide_minus_l; auto. apply Zdivide_trans with (1 := HD2). apply Zmod_divide; auto with zarith. pattern 2 at 2; rewrite <- Hd1; auto. replace 1 with ((h * 2 ^k + 1) - (h * 2 ^ k)); auto with zarith. apply Zdivide_minus_l; auto. apply Zdivide_trans with (1 := Hd2); auto. apply Zdivide_trans with (2 ^ k). apply Zpower_divide; auto with zarith. apply Zdivide_factor_l; auto with zarith. Qed. Definition proth_test h k a := let n := h * 2 ^ k + 1 in if (Z_lt_dec 1 a) then if (Z_lt_dec 0 h) then if (Z_lt_dec h (2 ^k)) then if Z_eq_dec (Zpow_mod a ((n - 1) / 2) n) (n - 1) then true else false else false else false else false. Theorem ProthTestOp: forall h k a, proth_test h k a = true -> prime (h * 2 ^ k + 1). intros h k a; unfold proth_test. repeat match goal with |- context[if ?X then _ else _] => case X end; try (intros; discriminate). intros H1 H2 H3 H4 _. assert (Hu: 0 < h * 2 ^ k). apply Zmult_lt_O_compat; auto with zarith. apply ProthTest with (a := a); auto. rewrite Zplus_mod; auto with zarith. rewrite <- Zpow_mod_Zpower_correct; auto with zarith. rewrite H1. rewrite (Zmod_small 1); auto with zarith. replace (h * 2 ^ k + 1 - 1 + 1) with (h * 2 ^ k + 1); auto with zarith. apply Zdivide_mod; auto with zarith. apply Z_div_pos; auto with zarith. Qed. Theorem prime5: prime 5. exact (ProthTestOp 1 2 2 (refl_equal _)). Qed. Theorem prime17: prime 17. exact (ProthTestOp 1 4 3 (refl_equal _)). Qed. Theorem prime257: prime 257. exact (ProthTestOp 1 8 3 (refl_equal _)). Qed. Theorem prime65537: prime 65537. exact (ProthTestOp 1 16 3 (refl_equal _)). Qed. (* Too tough !! Theorem prime4294967297: prime 4294967297. exact (ProthTestOp 1 32 3 (refl_equal _)). Qed. *)