(*************************************************************) (* This file is distributed under the terms of the *) (* GNU Lesser General Public License Version 2.1 *) (*************************************************************) (* Benjamin.Gregoire@inria.fr Laurent.Thery@inria.fr *) (*************************************************************) (********************************************************************** Pepin.v Pepin's Test for Fermat Number Definition: PepinTest **********************************************************************) Require Import ZArith. Require Import ZCAux. Require Import Pocklington. Open Scope Z_scope. Definition FermatNumber n := 2^(2^(Z_of_nat n)) + 1. Theorem Fermat_pos: forall n, 1 < FermatNumber n. unfold FermatNumber; intros n; apply Zle_lt_trans with (2 ^ 2 ^(Z_of_nat n)); auto with zarith. rewrite <- (Zpower_0_r 2); auto with zarith. apply Zpower_le_monotone; try split; auto with zarith. Qed. Theorem PepinTest: forall n, let Fn := FermatNumber n in (3 ^ ((Fn - 1) / 2) + 1) mod Fn = 0 -> prime Fn. intros n Fn H. assert (Hn: 1 < Fn). unfold Fn; apply Fermat_pos. apply PocklingtonCorollary1 with (F1 := 2^(2^(Z_of_nat n))) (R1 := 1); auto with zarith. 2: unfold Fn, FermatNumber; auto with zarith. apply Zlt_le_trans with (2 ^ 1); auto with zarith. rewrite Zpower_1_r; auto with zarith. apply Zpower_le_monotone; try split; auto with zarith. rewrite <- (Zpower_0_r 2); apply Zpower_le_monotone; try split; auto with zarith. unfold Fn, FermatNumber. assert (H1: 2 <= 2 ^ 2 ^ Z_of_nat n). pattern 2 at 1; rewrite <- (Zpower_1_r 2); auto with zarith. apply Zpower_le_monotone; split; auto with zarith. rewrite <- (Zpower_0_r 2); apply Zpower_le_monotone; try split; auto with zarith. apply Zlt_le_trans with (2 * 2 ^2 ^Z_of_nat n). assert (tmp: forall p, 2 * p = p + p); auto with zarith. apply Zmult_le_compat_r; auto with zarith. assert (Hd: (2 | Fn - 1)). exists (2 ^ (2^(Z_of_nat n) - 1)). pattern 2 at 3; rewrite <- (Zpower_1_r 2). rewrite <- Zpower_exp; auto with zarith. assert (tmp: forall p, p = (p - 1) +1); auto with zarith; rewrite <- tmp. unfold Fn, FermatNumber; ring. assert (0 < 2 ^ Z_of_nat n); auto with zarith. intros p Hp Hp1; exists 3; split; auto with zarith; split; auto. rewrite (Zdivide_Zdiv_eq 2 (Fn -1)); auto with zarith. rewrite Zmult_comm; rewrite Zpower_mult; auto with zarith. rewrite Zpower_mod; auto with zarith. assert (tmp: forall p, p = (p + 1) -1); auto with zarith; rewrite (fun x => (tmp (3 ^ x))). rewrite Zminus_mod; auto with zarith. rewrite H. rewrite (Zmod_small 1); auto with zarith. rewrite <- Zpower_mod; auto with zarith. rewrite Zmod_small; auto with zarith. simpl; unfold Zpower_pos; simpl; auto with zarith. apply Z_div_pos; auto with zarith. apply Zis_gcd_gcd; auto with zarith. apply Zis_gcd_intro; auto with zarith. intros x HD1 HD2. assert (Hd1: p = 2). apply prime_div_Zpower_prime with (4 := Hp1); auto with zarith. apply prime_2. assert (Hd2: (x | 2)). replace 2 with ((3 ^ ((Fn - 1) / 2) + 1) - (3 ^ ((Fn - 1) / 2) - 1)); auto with zarith. apply Zdivide_minus_l; auto. apply Zdivide_trans with (1 := HD2). apply Zmod_divide; auto with zarith. rewrite <- Hd1; auto. replace 1 with (Fn - (Fn - 1)); auto with zarith. apply Zdivide_minus_l; auto. apply Zdivide_trans with (1 := Hd2); auto. Qed. (* An optimized version with Zpow_mod *) Definition pepin_test n := let Fn := FermatNumber n in if Z_eq_dec (Zpow_mod 3 ((Fn - 1) / 2) Fn) (Fn - 1) then true else false. Theorem PepinTestOp: forall n, pepin_test n = true -> prime (FermatNumber n). intros n; unfold pepin_test. match goal with |- context[if ?X then _ else _] => case X end; try (intros; discriminate). intros H1 _; apply PepinTest. generalize (Fermat_pos n); intros H2. rewrite Zplus_mod; auto with zarith. rewrite <- Zpow_mod_Zpower_correct; auto with zarith. rewrite H1. rewrite (Zmod_small 1); auto with zarith. replace (FermatNumber n - 1 + 1) with (FermatNumber n); auto with zarith. apply Zdivide_mod; auto with zarith. apply Z_div_pos; auto with zarith. Qed. Theorem prime5: prime 5. exact (PepinTestOp 1 (refl_equal _)). Qed. Theorem prime17: prime 17. exact (PepinTestOp 2 (refl_equal _)). Qed. Theorem prime257: prime 257. exact (PepinTestOp 3 (refl_equal _)). Qed. Theorem prime65537: prime 65537. exact (PepinTestOp 4 (refl_equal _)). Qed. (* Too tough !! Theorem prime4294967297: prime 4294967297. refine (PepinTestOp 5 (refl_equal _)). Qed. *)