(*************************************************************) (* This file is distributed under the terms of the *) (* GNU Lesser General Public License Version 2.1 *) (*************************************************************) (* Benjamin.Gregoire@inria.fr Laurent.Thery@inria.fr *) (*************************************************************) Require Export ZArith. Require Export ZCmisc. Open Local Scope positive_scope. Open Local Scope P_scope. (* [div_eucl a b] return [(q,r)] such that a = q*b + r *) Fixpoint div_eucl (a b : positive) {struct a} : N * N := match a with | xH => if 1 ?< b then (0%N, 1%N) else (1%N, 0%N) | xO a' => let (q, r) := div_eucl a' b in match q, r with | N0, N0 => (0%N, 0%N) (* n'arrive jamais *) | N0, Npos r => if (xO r) ?< b then (0%N, Npos (xO r)) else (1%N,PminusN (xO r) b) | Npos q, N0 => (Npos (xO q), 0%N) | Npos q, Npos r => if (xO r) ?< b then (Npos (xO q), Npos (xO r)) else (Npos (xI q),PminusN (xO r) b) end | xI a' => let (q, r) := div_eucl a' b in match q, r with | N0, N0 => (0%N, 0%N) (* Impossible *) | N0, Npos r => if (xI r) ?< b then (0%N, Npos (xI r)) else (1%N,PminusN (xI r) b) | Npos q, N0 => if 1 ?< b then (Npos (xO q), 1%N) else (Npos (xI q), 0%N) | Npos q, Npos r => if (xI r) ?< b then (Npos (xO q), Npos (xI r)) else (Npos (xI q),PminusN (xI r) b) end end. Infix "/" := div_eucl : P_scope. Open Scope Z_scope. Opaque Zmult. Lemma div_eucl_spec : forall a b, Zpos a = fst (a/b)%P * b + snd (a/b)%P /\ snd (a/b)%P < b. Proof with zsimpl;try apply Zlt_0_pos;try ((ring;fail) || omega). intros a b;generalize a;clear a;induction a;simpl;zsimpl. case IHa; destruct (a/b)%P as [q r]. case q; case r; simpl fst; simpl snd. rewrite Zmult_0_l; rewrite Zplus_0_r; intros HH; discriminate HH. intros p H; rewrite H; match goal with | [|- context [ ?xx ?< b ]] => generalize (is_lt_spec xx b);destruct (xx ?< b) | _ => idtac end; zsimpl; simpl; intros H1 H2; split; zsimpl; auto. rewrite PminusN_le... generalize H1; zsimpl; auto. rewrite PminusN_le... generalize H1; zsimpl; auto. intros p H; rewrite H; match goal with | [|- context [ ?xx ?< b ]] => generalize (is_lt_spec xx b);destruct (xx ?< b) | _ => idtac end; zsimpl; simpl; intros H1 H2; split; zsimpl; auto; try ring. ring_simplify. case (Zle_lt_or_eq _ _ H1); auto with zarith. intros p p1 H; rewrite H. match goal with | [|- context [ ?xx ?< b ]] => generalize (is_lt_spec xx b);destruct (xx ?< b) | _ => idtac end; zsimpl; simpl; intros H1 H2; split; zsimpl; auto; try ring. rewrite PminusN_le... generalize H1; zsimpl; auto. rewrite PminusN_le... generalize H1; zsimpl; auto. case IHa; destruct (a/b)%P as [q r]. case q; case r; simpl fst; simpl snd. rewrite Zmult_0_l; rewrite Zplus_0_r; intros HH; discriminate HH. intros p H; rewrite H; match goal with | [|- context [ ?xx ?< b ]] => generalize (is_lt_spec xx b);destruct (xx ?< b) | _ => idtac end; zsimpl; simpl; intros H1 H2; split; zsimpl; auto. rewrite PminusN_le... generalize H1; zsimpl; auto. rewrite PminusN_le... generalize H1; zsimpl; auto. intros p H; rewrite H; simpl; intros H1; split; auto. zsimpl; ring. intros p p1 H; rewrite H. match goal with | [|- context [ ?xx ?< b ]] => generalize (is_lt_spec xx b);destruct (xx ?< b) | _ => idtac end; zsimpl; simpl; intros H1 H2; split; zsimpl; auto; try ring. rewrite PminusN_le... generalize H1; zsimpl; auto. rewrite PminusN_le... generalize H1; zsimpl; auto. match goal with | [|- context [ ?xx ?< b ]] => generalize (is_lt_spec xx b);destruct (xx ?< b) | _ => idtac end; zsimpl; simpl. split; auto. case (Zle_lt_or_eq 1 b); auto with zarith. generalize (Zlt_0_pos b); auto with zarith. Qed. Transparent Zmult. (******** Definition du modulo ************) (* [mod a b] return [a] modulo [b] *) Fixpoint Pmod (a b : positive) {struct a} : N := match a with | xH => if 1 ?< b then 1%N else 0%N | xO a' => let r := Pmod a' b in match r with | N0 => 0%N | Npos r' => if (xO r') ?< b then Npos (xO r') else PminusN (xO r') b end | xI a' => let r := Pmod a' b in match r with | N0 => if 1 ?< b then 1%N else 0%N | Npos r' => if (xI r') ?< b then Npos (xI r') else PminusN (xI r') b end end. Infix "mod" := Pmod (at level 40, no associativity) : P_scope. Open Local Scope P_scope. Lemma Pmod_div_eucl : forall a b, a mod b = snd (a/b). Proof with auto. intros a b;generalize a;clear a;induction a;simpl; try (rewrite IHa; assert (H1 := div_eucl_spec a b); destruct (a/b) as [q r]; destruct q as [|q];destruct r as [|r];simpl in *; match goal with | [|- context [ ?xx ?< b ]] => assert (H2 := is_lt_spec xx b);destruct (xx ?< b) | _ => idtac end;simpl) ... destruct H1 as [H3 H4];discriminate H3. destruct (1 ?< b);simpl ... Qed. Lemma mod1: forall a, a mod 1 = 0%N. Proof. induction a;simpl;try rewrite IHa;trivial. Qed. Lemma mod_a_a_0 : forall a, a mod a = N0. Proof. intros a;generalize (div_eucl_spec a a);rewrite <- Pmod_div_eucl. destruct (fst (a / a));unfold Z_of_N at 1. rewrite Zmult_0_l;intros (H1,H2);elimtype False;omega. assert (a<=p*a). pattern (Zpos a) at 1;rewrite <- (Zmult_1_l a). assert (H1:= Zlt_0_pos p);assert (H2:= Zle_0_pos a); apply Zmult_le_compat;trivial;try omega. destruct (a mod a)%P;auto with zarith. unfold Z_of_N;assert (H1:= Zlt_0_pos p0);intros (H2,H3);elimtype False;omega. Qed. Lemma mod_le_2r : forall (a b r: positive) (q:N), Zpos a = b*q + r -> b <= a -> r < b -> 2*r <= a. Proof. intros a b r q H0 H1 H2. assert (H3:=Zlt_0_pos a). assert (H4:=Zlt_0_pos b). assert (H5:=Zlt_0_pos r). destruct q as [|q]. rewrite Zmult_0_r in H0. elimtype False;omega. assert (H6:=Zlt_0_pos q). unfold Z_of_N in H0. assert (Zpos r = a - b*q). omega. simpl;zsimpl. pattern r at 2;rewrite H. assert (b <= b * q). pattern (Zpos b) at 1;rewrite <- (Zmult_1_r b). apply Zmult_le_compat;try omega. apply Zle_trans with (a - b * q + b). omega. apply Zle_trans with (a - b + b);omega. Qed. Lemma mod_lt : forall a b r, a mod b = Npos r -> r < b. Proof. intros a b r H;generalize (div_eucl_spec a b);rewrite <- Pmod_div_eucl; rewrite H;simpl;intros (H1,H2);omega. Qed. Lemma mod_le : forall a b r, a mod b = Npos r -> r <= b. Proof. intros a b r H;assert (H1:= mod_lt _ _ _ H);omega. Qed. Lemma mod_le_a : forall a b r, a mod b = r -> r <= a. Proof. intros a b r H;generalize (div_eucl_spec a b);rewrite <- Pmod_div_eucl; rewrite H;simpl;intros (H1,H2). assert (0 <= fst (a / b) * b). destruct (fst (a / b));simpl;auto with zarith. auto with zarith. Qed. Lemma lt_mod : forall a b, Zpos a < Zpos b -> (a mod b)%P = Npos a. Proof. intros a b H; rewrite Pmod_div_eucl. case (div_eucl_spec a b). assert (0 <= snd(a/b)). destruct (snd(a/b));simpl;auto with zarith. destruct (fst (a/b)). unfold Z_of_N at 1;rewrite Zmult_0_l;rewrite Zplus_0_l. destruct (snd (a/b));simpl; intros H1 H2;inversion H1;trivial. unfold Z_of_N at 1;assert (b <= p*b). pattern (Zpos b) at 1; rewrite <- (Zmult_1_l (Zpos b)). assert (H1 := Zlt_0_pos p);apply Zmult_le_compat;try omega. apply Zle_0_pos. intros;elimtype False;omega. Qed. Fixpoint gcd_log2 (a b c:positive) {struct c}: option positive := match a mod b with | N0 => Some b | Npos r => match b mod r, c with | N0, _ => Some r | Npos r', xH => None | Npos r', xO c' => gcd_log2 r r' c' | Npos r', xI c' => gcd_log2 r r' c' end end. Fixpoint egcd_log2 (a b c:positive) {struct c}: option (Z * Z * positive) := match a/b with | (_, N0) => Some (0, 1, b) | (q, Npos r) => match b/r, c with | (_, N0), _ => Some (1, -q, r) | (q', Npos r'), xH => None | (q', Npos r'), xO c' => match egcd_log2 r r' c' with None => None | Some (u', v', w') => let u := u' - v' * q' in Some (u, v' - q * u, w') end | (q', Npos r'), xI c' => match egcd_log2 r r' c' with None => None | Some (u', v', w') => let u := u' - v' * q' in Some (u, v' - q * u, w') end end end. Lemma egcd_gcd_log2: forall c a b, match egcd_log2 a b c, gcd_log2 a b c with None, None => True | Some (u,v,r), Some r' => r = r' | _, _ => False end. induction c; simpl; auto; try (intros a b; generalize (Pmod_div_eucl a b); case (a/b); simpl; intros q r1 H; subst; case (a mod b); auto; intros r; generalize (Pmod_div_eucl b r); case (b/r); simpl; intros q' r1 H; subst; case (b mod r); auto; intros r'; generalize (IHc r r'); case egcd_log2; auto; intros ((p1,p2),p3); case gcd_log2; auto). Qed. Ltac rw l := match l with | (?r, ?r1) => match type of r with True => rewrite <- r1 | _ => rw r; rw r1 end | ?r => rewrite r end. Lemma egcd_log2_ok: forall c a b, match egcd_log2 a b c with None => True | Some (u,v,r) => u * a + v * b = r end. induction c; simpl; auto; intros a b; generalize (div_eucl_spec a b); case (a/b); simpl fst; simpl snd; intros q r1; case r1; try (intros; ring); simpl; intros r (Hr1, Hr2); clear r1; generalize (div_eucl_spec b r); case (b/r); simpl fst; simpl snd; intros q' r1; case r1; try (intros; rewrite Hr1; ring); simpl; intros r' (Hr'1, Hr'2); clear r1; auto; generalize (IHc r r'); case egcd_log2; auto; intros ((u',v'),w'); case gcd_log2; auto; intros; rw ((I, H), Hr1, Hr'1); ring. Qed. Fixpoint log2 (a:positive) : positive := match a with | xH => xH | xO a => Psucc (log2 a) | xI a => Psucc (log2 a) end. Lemma gcd_log2_1: forall a c, gcd_log2 a xH c = Some xH. Proof. destruct c;simpl;try rewrite mod1;trivial. Qed. Lemma log2_Zle :forall a b, Zpos a <= Zpos b -> log2 a <= log2 b. Proof with zsimpl;try omega. induction a;destruct b;zsimpl;intros;simpl ... assert (log2 a <= log2 b) ... apply IHa ... assert (log2 a <= log2 b) ... apply IHa ... assert (H1 := Zlt_0_pos a);elimtype False;omega. assert (log2 a <= log2 b) ... apply IHa ... assert (log2 a <= log2 b) ... apply IHa ... assert (H1 := Zlt_0_pos a);elimtype False;omega. assert (H1 := Zlt_0_pos (log2 b)) ... assert (H1 := Zlt_0_pos (log2 b)) ... Qed. Lemma log2_1_inv : forall a, Zpos (log2 a) = 1 -> a = xH. Proof. destruct a;simpl;zsimpl;intros;trivial. assert (H1:= Zlt_0_pos (log2 a));elimtype False;omega. assert (H1:= Zlt_0_pos (log2 a));elimtype False;omega. Qed. Lemma mod_log2 : forall a b r:positive, a mod b = Npos r -> b <= a -> log2 r + 1 <= log2 a. Proof. intros; cut (log2 (xO r) <= log2 a). simpl;zsimpl;trivial. apply log2_Zle. replace (Zpos (xO r)) with (2 * r)%Z;trivial. generalize (div_eucl_spec a b);rewrite <- Pmod_div_eucl;rewrite H. rewrite Zmult_comm;intros [H1 H2];apply mod_le_2r with b (fst (a/b));trivial. Qed. Lemma gcd_log2_None_aux : forall c a b, Zpos b <= Zpos a -> log2 b <= log2 c -> gcd_log2 a b c <> None. Proof. induction c;simpl;intros; (CaseEq (a mod b);[intros Heq|intros r Heq];try (intro;discriminate)); (CaseEq (b mod r);[intros Heq'|intros r' Heq'];try (intro;discriminate)). apply IHc. apply mod_le with b;trivial. generalize H0 (mod_log2 _ _ _ Heq' (mod_le _ _ _ Heq));zsimpl;intros;omega. apply IHc. apply mod_le with b;trivial. generalize H0 (mod_log2 _ _ _ Heq' (mod_le _ _ _ Heq));zsimpl;intros;omega. assert (Zpos (log2 b) = 1). assert (H1 := Zlt_0_pos (log2 b));omega. rewrite (log2_1_inv _ H1) in Heq;rewrite mod1 in Heq;discriminate Heq. Qed. Lemma gcd_log2_None : forall a b, Zpos b <= Zpos a -> gcd_log2 a b b <> None. Proof. intros;apply gcd_log2_None_aux;auto with zarith. Qed. Lemma gcd_log2_Zle : forall c1 c2 a b, log2 c1 <= log2 c2 -> gcd_log2 a b c1 <> None -> gcd_log2 a b c2 = gcd_log2 a b c1. Proof with zsimpl;trivial;try omega. induction c1;destruct c2;simpl;intros; (destruct (a mod b) as [|r];[idtac | destruct (b mod r)]) ... apply IHc1;trivial. generalize H;zsimpl;intros;omega. apply IHc1;trivial. generalize H;zsimpl;intros;omega. elim H;destruct (log2 c1);trivial. apply IHc1;trivial. generalize H;zsimpl;intros;omega. apply IHc1;trivial. generalize H;zsimpl;intros;omega. elim H;destruct (log2 c1);trivial. elim H0;trivial. elim H0;trivial. Qed. Lemma gcd_log2_Zle_log : forall a b c, log2 b <= log2 c -> Zpos b <= Zpos a -> gcd_log2 a b c = gcd_log2 a b b. Proof. intros a b c H1 H2; apply gcd_log2_Zle; trivial. apply gcd_log2_None; trivial. Qed. Lemma gcd_log2_mod0 : forall a b c, a mod b = N0 -> gcd_log2 a b c = Some b. Proof. intros a b c H;destruct c;simpl;rewrite H;trivial. Qed. Require Import Zwf. Lemma Zwf_pos : well_founded (fun x y => Zpos x < Zpos y). Proof. unfold well_founded. assert (forall x a ,x = Zpos a -> Acc (fun x y : positive => x < y) a). intros x;assert (Hacc := Zwf_well_founded 0 x);induction Hacc;intros;subst x. constructor;intros. apply H0 with (Zpos y);trivial. split;auto with zarith. intros a;apply H with (Zpos a);trivial. Qed. Opaque Pmod. Lemma gcd_log2_mod : forall a b, Zpos b <= Zpos a -> forall r, a mod b = Npos r -> gcd_log2 a b b = gcd_log2 b r r. Proof. intros a b;generalize a;clear a; assert (Hacc := Zwf_pos b). induction Hacc; intros a Hle r Hmod. rename x into b. destruct b;simpl;rewrite Hmod. CaseEq (xI b mod r)%P;intros. rewrite gcd_log2_mod0;trivial. assert (H2 := mod_le _ _ _ H1);assert (H3 := mod_lt _ _ _ Hmod); assert (H4 := mod_le _ _ _ Hmod). rewrite (gcd_log2_Zle_log r p b);trivial. symmetry;apply H0;trivial. generalize (mod_log2 _ _ _ H1 H4);simpl;zsimpl;intros;omega. CaseEq (xO b mod r)%P;intros. rewrite gcd_log2_mod0;trivial. assert (H2 := mod_le _ _ _ H1);assert (H3 := mod_lt _ _ _ Hmod); assert (H4 := mod_le _ _ _ Hmod). rewrite (gcd_log2_Zle_log r p b);trivial. symmetry;apply H0;trivial. generalize (mod_log2 _ _ _ H1 H4);simpl;zsimpl;intros;omega. rewrite mod1 in Hmod;discriminate Hmod. Qed. Lemma gcd_log2_xO_Zle : forall a b, Zpos b <= Zpos a -> gcd_log2 a b (xO b) = gcd_log2 a b b. Proof. intros a b Hle;apply gcd_log2_Zle. simpl;zsimpl;auto with zarith. apply gcd_log2_None_aux;auto with zarith. Qed. Lemma gcd_log2_xO_Zlt : forall a b, Zpos a < Zpos b -> gcd_log2 a b (xO b) = gcd_log2 b a a. Proof. intros a b H;simpl. assert (Hlt := Zlt_0_pos a). assert (H0 := lt_mod _ _ H). rewrite H0;simpl. CaseEq (b mod a)%P;intros;simpl. symmetry;apply gcd_log2_mod0;trivial. assert (H2 := mod_lt _ _ _ H1). rewrite (gcd_log2_Zle_log a p b);auto with zarith. symmetry;apply gcd_log2_mod;auto with zarith. apply log2_Zle. replace (Zpos p) with (Z_of_N (Npos p));trivial. apply mod_le_a with a;trivial. Qed. Lemma gcd_log2_x0 : forall a b, gcd_log2 a b (xO b) <> None. Proof. intros;simpl;CaseEq (a mod b)%P;intros. intro;discriminate. CaseEq (b mod p)%P;intros. intro;discriminate. assert (H1 := mod_le_a _ _ _ H0). unfold Z_of_N in H1. assert (H2 := mod_le _ _ _ H0). apply gcd_log2_None_aux. trivial. apply log2_Zle. trivial. Qed. Lemma egcd_log2_x0 : forall a b, egcd_log2 a b (xO b) <> None. Proof. intros a b H; generalize (egcd_gcd_log2 (xO b) a b) (gcd_log2_x0 a b); rw H; case gcd_log2; auto. Qed. Definition gcd a b := match gcd_log2 a b (xO b) with | Some p => p | None => (* can not appear *) 1%positive end. Definition egcd a b := match egcd_log2 a b (xO b) with | Some p => p | None => (* can not appear *) (1,1,1%positive) end. Lemma gcd_mod0 : forall a b, (a mod b)%P = N0 -> gcd a b = b. Proof. intros a b H;unfold gcd. pattern (gcd_log2 a b (xO b)) at 1; rewrite (gcd_log2_mod0 _ _ (xO b) H);trivial. Qed. Lemma gcd1 : forall a, gcd a xH = xH. Proof. intros a;rewrite gcd_mod0;[trivial|apply mod1]. Qed. Lemma gcd_mod : forall a b r, (a mod b)%P = Npos r -> gcd a b = gcd b r. Proof. intros a b r H;unfold gcd. assert (log2 r <= log2 (xO r)). simpl;zsimpl;omega. assert (H1 := mod_lt _ _ _ H). pattern (gcd_log2 b r (xO r)) at 1; rewrite gcd_log2_Zle_log;auto with zarith. destruct (Z_lt_le_dec a b) as [z|z]. pattern (gcd_log2 a b (xO b)) at 1; rewrite gcd_log2_xO_Zlt;trivial. rewrite (lt_mod _ _ z) in H;inversion H. assert (r <= b). omega. generalize (gcd_log2_None _ _ H2). destruct (gcd_log2 b r r);intros;trivial. assert (log2 b <= log2 (xO b)). simpl;zsimpl;omega. pattern (gcd_log2 a b (xO b)) at 1; rewrite gcd_log2_Zle_log;auto with zarith. pattern (gcd_log2 a b b) at 1;rewrite (gcd_log2_mod _ _ z _ H). assert (r <= b). omega. generalize (gcd_log2_None _ _ H3). destruct (gcd_log2 b r r);intros;trivial. Qed. Require Import ZArith. Require Import Znumtheory. Hint Rewrite Zpos_mult times_Zmult square_Zmult Psucc_Zplus: zmisc. Ltac mauto := trivial;autorewrite with zmisc;trivial;auto with zarith. Lemma gcd_Zis_gcd : forall a b:positive, (Zis_gcd b a (gcd b a)%P). Proof with mauto. intros a;assert (Hacc := Zwf_pos a);induction Hacc;rename x into a;intros. generalize (div_eucl_spec b a)... rewrite <- (Pmod_div_eucl b a). CaseEq (b mod a)%P;[intros Heq|intros r Heq]; intros (H1,H2). simpl in H1;rewrite Zplus_0_r in H1. rewrite (gcd_mod0 _ _ Heq). constructor;mauto. apply Zdivide_intro with (fst (b/a)%P);trivial. rewrite (gcd_mod _ _ _ Heq). rewrite H1;apply Zis_gcd_sym. rewrite Zmult_comm;apply Zis_gcd_for_euclid2;simpl in *. apply Zis_gcd_sym;auto. Qed. Lemma egcd_Zis_gcd : forall a b:positive, let (uv,w) := egcd a b in let (u,v) := uv in u * a + v * b = w /\ (Zis_gcd b a w). Proof with mauto. intros a b; unfold egcd. generalize (egcd_log2_ok (xO b) a b) (egcd_gcd_log2 (xO b) a b) (egcd_log2_x0 a b) (gcd_Zis_gcd b a); unfold egcd, gcd. case egcd_log2; try (intros ((u,v),w)); case gcd_log2; try (intros; match goal with H: False |- _ => case H end); try (intros _ _ H1; case H1; auto; fail). intros; subst; split; try apply Zis_gcd_sym; auto. Qed. Definition Zgcd a b := match a, b with | Z0, _ => b | _, Z0 => a | Zpos a, Zneg b => Zpos (gcd a b) | Zneg a, Zpos b => Zpos (gcd a b) | Zpos a, Zpos b => Zpos (gcd a b) | Zneg a, Zneg b => Zpos (gcd a b) end. Lemma Zgcd_is_gcd : forall x y, Zis_gcd x y (Zgcd x y). Proof. destruct x;destruct y;simpl. apply Zis_gcd_0. apply Zis_gcd_sym;apply Zis_gcd_0. apply Zis_gcd_sym;apply Zis_gcd_0. apply Zis_gcd_0. apply gcd_Zis_gcd. apply Zis_gcd_sym;apply Zis_gcd_minus;simpl;apply gcd_Zis_gcd. apply Zis_gcd_0. apply Zis_gcd_minus;simpl;apply Zis_gcd_sym;apply gcd_Zis_gcd. apply Zis_gcd_minus;apply Zis_gcd_minus;simpl;apply gcd_Zis_gcd. Qed. Definition Zegcd a b := match a, b with | Z0, Z0 => (0,0,0) | Zpos _, Z0 => (1,0,a) | Zneg _, Z0 => (-1,0,-a) | Z0, Zpos _ => (0,1,b) | Z0, Zneg _ => (0,-1,-b) | Zpos a, Zneg b => match egcd a b with (u,v,w) => (u,-v, Zpos w) end | Zneg a, Zpos b => match egcd a b with (u,v,w) => (-u,v, Zpos w) end | Zpos a, Zpos b => match egcd a b with (u,v,w) => (u,v, Zpos w) end | Zneg a, Zneg b => match egcd a b with (u,v,w) => (-u,-v, Zpos w) end end. Lemma Zegcd_is_egcd : forall x y, match Zegcd x y with (u,v,w) => u * x + v * y = w /\ Zis_gcd x y w /\ 0 <= w end. Proof. assert (zx0: forall x, Zneg x = -x). simpl; auto. assert (zx1: forall x, -(-x) = x). intro x; case x; simpl; auto. destruct x;destruct y;simpl; try (split; [idtac|split]); auto; try (red; simpl; intros; discriminate); try (rewrite zx0; apply Zis_gcd_minus; try rewrite zx1; auto; apply Zis_gcd_minus; try rewrite zx1; simpl; auto); try apply Zis_gcd_0; try (apply Zis_gcd_sym;apply Zis_gcd_0); generalize (egcd_Zis_gcd p p0); case egcd; intros (u,v) w (H1, H2); split; repeat rewrite zx0; try (rewrite <- H1; ring); auto; (split; [idtac | red; intros; discriminate]). apply Zis_gcd_sym; auto. apply Zis_gcd_sym; apply Zis_gcd_minus; rw zx1; apply Zis_gcd_sym; auto. apply Zis_gcd_minus; rw zx1; auto. apply Zis_gcd_minus; rw zx1; auto. apply Zis_gcd_minus; rw zx1; auto. apply Zis_gcd_sym; auto. Qed.