(*************************************************************) (* This file is distributed under the terms of the *) (* GNU Lesser General Public License Version 2.1 *) (*************************************************************) (* Benjamin.Gregoire@inria.fr Laurent.Thery@inria.fr *) (*************************************************************) (*********************************************************************** Root.v Proof that a polynomial has at most n roots ************************************************************************) Require Import Coq.ZArith.ZArith. Require Import Coq.Lists.List. Require Import Coqprime.UList. Require Import Coqprime.Tactic. Require Import Coqprime.Permutation. Open Scope Z_scope. Section Root. Variable A: Set. Variable P: A -> Prop. Variable plus mult: A -> A -> A. Variable op: A -> A. Variable zero one: A. Let pol := list A. Definition toA z := match z with Z0 => zero | Zpos p => iter_pos p _ (plus one) zero | Zneg p => op (iter_pos p _ (plus one) zero) end. Fixpoint eval (p: pol) (x: A) {struct p} : A := match p with nil => zero | a::p1 => plus a (mult x (eval p1 x)) end. Fixpoint div (p: pol) (x: A) {struct p} : pol * A := match p with nil => (nil, zero) | a::nil => (nil, a) | a::p1 => (snd (div p1 x)::fst (div p1 x), (plus a (mult x (snd (div p1 x))))) end. Hypothesis Pzero: P zero. Hypothesis Pplus: forall x y, P x -> P y -> P (plus x y). Hypothesis Pmult: forall x y, P x -> P y -> P (mult x y). Hypothesis Pop: forall x, P x -> P (op x). Hypothesis plus_zero: forall a, P a -> plus zero a = a. Hypothesis plus_comm: forall a b, P a -> P b -> plus a b = plus b a. Hypothesis plus_assoc: forall a b c, P a -> P b -> P c -> plus a (plus b c) = plus (plus a b) c. Hypothesis mult_zero: forall a, P a -> mult zero a = zero. Hypothesis mult_comm: forall a b, P a -> P b -> mult a b = mult b a. Hypothesis mult_assoc: forall a b c, P a -> P b -> P c -> mult a (mult b c) = mult (mult a b) c. Hypothesis mult_plus_distr: forall a b c, P a -> P b -> P c -> mult a (plus b c) = plus (mult a b) (mult a c). Hypothesis plus_op_zero: forall a, P a -> plus a (op a) = zero. Hypothesis mult_integral: forall a b, P a -> P b -> mult a b = zero -> a = zero \/ b = zero. (* Not necessary in Set just handy *) Hypothesis A_dec: forall a b: A, {a = b} + {a <> b}. Theorem eval_P: forall p a, P a -> (forall i, In i p -> P i) -> P (eval p a). intros p a Pa; elim p; simpl; auto with datatypes. intros a1 l1 Rec H; apply Pplus; auto. Qed. Hint Resolve eval_P. Theorem div_P: forall p a, P a -> (forall i, In i p -> P i) -> (forall i, In i (fst (div p a)) -> P i) /\ P (snd (div p a)). intros p a Pa; elim p; auto with datatypes. intros a1 l1; case l1. simpl; intuition. intros a2 p2 Rec Hi; split. case Rec; auto with datatypes. intros H H1 i. replace (In i (fst (div (a1 :: a2 :: p2) a))) with (snd (div (a2::p2) a) = i \/ In i (fst (div (a2::p2) a))); auto. intros [Hi1 | Hi1]; auto. rewrite <- Hi1; auto. change ( P (plus a1 (mult a (snd (div (a2::p2) a))))); auto with datatypes. apply Pplus; auto with datatypes. apply Pmult; auto with datatypes. case Rec; auto with datatypes. Qed. Theorem div_correct: forall p x y, P x -> P y -> (forall i, In i p -> P i) -> eval p y = plus (mult (eval (fst (div p x)) y) (plus y (op x))) (snd (div p x)). intros p x y; elim p; simpl. intros; rewrite mult_zero; try rewrite plus_zero; auto. intros a l; case l; simpl; auto. intros _ px py pa; rewrite (fun x => mult_comm x zero); repeat rewrite mult_zero; try apply plus_comm; auto. intros a1 l1. generalize (div_P (a1::l1) x); simpl. match goal with |- context[fst ?A] => case A end; simpl. intros q r Hd Rec px py pi. assert (pr: P r). case Hd; auto. assert (pa1: P a1). case Hd; auto. assert (pey: P (eval q y)). apply eval_P; auto. case Hd; auto. rewrite Rec; auto with datatypes. rewrite (fun x y => plus_comm x (plus a y)); try rewrite <- plus_assoc; auto. apply f_equal2 with (f := plus); auto. repeat rewrite mult_plus_distr; auto. repeat (rewrite (fun x y => (mult_comm (plus x y))) || rewrite mult_plus_distr); auto. rewrite (fun x => (plus_comm x (mult y r))); auto. repeat rewrite plus_assoc; try apply f_equal2 with (f := plus); auto. 2: repeat rewrite mult_assoc; try rewrite (fun y => mult_comm y (op x)); repeat rewrite mult_assoc; auto. rewrite (fun z => (plus_comm z (mult (op x) r))); auto. repeat rewrite plus_assoc; try apply f_equal2 with (f := plus); auto. 2: apply f_equal2 with (f := mult); auto. repeat rewrite (fun x => mult_comm x r); try rewrite <- mult_plus_distr; auto. rewrite (plus_comm (op x)); try rewrite plus_op_zero; auto. rewrite (fun x => mult_comm x zero); try rewrite mult_zero; try rewrite plus_zero; auto. Qed. Theorem div_correct_factor: forall p a, (forall i, In i p -> P i) -> P a -> eval p a = zero -> forall x, P x -> eval p x = (mult (eval (fst (div p a)) x) (plus x (op a))). intros p a Hp Ha H x px. case (div_P p a); auto; intros Hd1 Hd2. rewrite (div_correct p a x); auto. generalize (div_correct p a a). rewrite plus_op_zero; try rewrite (fun x => mult_comm x zero); try rewrite mult_zero; try rewrite plus_zero; try rewrite H; auto. intros H1; rewrite <- H1; auto. rewrite (fun x => plus_comm x zero); auto. Qed. Theorem length_decrease: forall p x, p <> nil -> (length (fst (div p x)) < length p)%nat. intros p x; elim p; simpl; auto. intros H1; case H1; auto. intros a l; case l; simpl; auto. intros a1 l1. match goal with |- context[fst ?A] => case A end; simpl; auto with zarith. intros p1 _ H H1. apply lt_n_S; apply H; intros; discriminate. Qed. Theorem root_max: forall p l, ulist l -> (forall i, In i p -> P i) -> (forall i, In i l -> P i) -> (forall x, In x l -> eval p x = zero) -> (length p <= length l)%nat -> forall x, P x -> eval p x = zero. intros p l; generalize p; elim l; clear l p; simpl; auto. intros p; case p; simpl; auto. intros a p1 _ _ _ _ H; contradict H; auto with arith. intros a p1 Rec p; case p. simpl; auto. intros a1 p2 H H1 H2 H3 H4 x px. assert (Hu: eval (a1 :: p2) a = zero); auto with datatypes. rewrite (div_correct_factor (a1 :: p2) a); auto with datatypes. match goal with |- mult ?X _ = _ => replace X with zero end; try apply mult_zero; auto. apply sym_equal; apply Rec; auto with datatypes. apply ulist_inv with (1 := H). intros i Hi; case (div_P (a1 :: p2) a); auto. intros x1 H5; case (mult_integral (eval (fst (div (a1 :: p2) a)) x1) (plus x1 (op a))); auto. apply eval_P; auto. intros i Hi; case (div_P (a1 :: p2) a); auto. rewrite <- div_correct_factor; auto. intros H6; case (ulist_app_inv _ (a::nil) p1 x1); simpl; auto. left. apply trans_equal with (plus zero x1); auto. rewrite <- (plus_op_zero a); try rewrite <- plus_assoc; auto. rewrite (fun x => plus_comm (op x)); try rewrite H6; try rewrite plus_comm; auto. apply sym_equal; apply plus_zero; auto. apply lt_n_Sm_le;apply lt_le_trans with (length (a1 :: p2)); auto with zarith. apply length_decrease; auto with datatypes. Qed. Theorem root_max_is_zero: forall p l, ulist l -> (forall i, In i p -> P i) -> (forall i, In i l -> P i) -> (forall x, In x l -> eval p x = zero) -> (length p <= length l)%nat -> forall x, (In x p) -> x = zero. intros p l; generalize p; elim l; clear l p; simpl; auto. intros p; case p; simpl; auto. intros _ _ _ _ _ x H; case H. intros a p1 _ _ _ _ H; contradict H; auto with arith. intros a p1 Rec p; case p. simpl; auto. intros _ _ _ _ _ x H; case H. simpl; intros a1 p2 H H1 H2 H3 H4 x H5. assert (Ha1: a1 = zero). assert (Hu: (eval (a1::p2) zero = zero)). apply root_max with (l := a :: p1); auto. rewrite <- Hu; simpl; rewrite mult_zero; try rewrite plus_comm; sauto. case H5; clear H5; intros H5; subst; auto. apply Rec with p2; auto with arith. apply ulist_inv with (1 := H). intros x1 Hx1. case (In_dec A_dec zero p1); intros Hz. case (in_permutation_ex _ zero p1); auto; intros p3 Hp3. apply root_max with (l := a::p3); auto. apply ulist_inv with zero. apply ulist_perm with (a::p1); auto. apply permutation_trans with (a:: (zero:: p3)); auto. apply permutation_skip; auto. apply permutation_sym; auto. simpl; intros x2 [Hx2 | Hx2]; subst; auto. apply H2; right; apply permutation_in with (1 := Hp3); auto with datatypes. simpl; intros x2 [Hx2 | Hx2]; subst. case (mult_integral x2 (eval p2 x2)); auto. rewrite <- H3 with x2; sauto. rewrite plus_zero; auto. intros H6; case (ulist_app_inv _ (x2::nil) p1 x2) ; auto with datatypes. rewrite H6; apply permutation_in with (1 := Hp3); auto with datatypes. case (mult_integral x2 (eval p2 x2)); auto. apply H2; right; apply permutation_in with (1 := Hp3); auto with datatypes. apply eval_P; auto. apply H2; right; apply permutation_in with (1 := Hp3); auto with datatypes. rewrite <- H3 with x2; sauto; try right. apply sym_equal; apply plus_zero; auto. apply Pmult; auto. apply H2; right; apply permutation_in with (1 := Hp3); auto with datatypes. apply eval_P; auto. apply H2; right; apply permutation_in with (1 := Hp3); auto with datatypes. apply permutation_in with (1 := Hp3); auto with datatypes. intros H6; case (ulist_app_inv _ (zero::nil) p3 x2) ; auto with datatypes. simpl; apply ulist_perm with (1:= (permutation_sym _ _ _ Hp3)). apply ulist_inv with (1 := H). rewrite H6; auto with datatypes. replace (length (a :: p3)) with (length (zero::p3)); auto. rewrite permutation_length with (1 := Hp3); auto with arith. case (mult_integral x1 (eval p2 x1)); auto. rewrite <- H3 with x1; sauto; try right. apply sym_equal; apply plus_zero; auto. intros HH; case Hz; rewrite <- HH; auto. Qed. End Root.