(*************************************************************) (* This file is distributed under the terms of the *) (* GNU Lesser General Public License Version 2.1 *) (*************************************************************) (* Benjamin.Gregoire@inria.fr Laurent.Thery@inria.fr *) (*************************************************************) (********************************************************************** Permutation.v Defintion and properties of permutations **********************************************************************) Require Export Coq.Lists.List. Require Export Coqprime.ListAux. Section permutation. Variable A : Set. (************************************** Definition of permutations as sequences of adjacent transpositions **************************************) Inductive permutation : list A -> list A -> Prop := | permutation_nil : permutation nil nil | permutation_skip : forall (a : A) (l1 l2 : list A), permutation l2 l1 -> permutation (a :: l2) (a :: l1) | permutation_swap : forall (a b : A) (l : list A), permutation (a :: b :: l) (b :: a :: l) | permutation_trans : forall l1 l2 l3 : list A, permutation l1 l2 -> permutation l2 l3 -> permutation l1 l3. Hint Constructors permutation. (************************************** Reflexivity **************************************) Theorem permutation_refl : forall l : list A, permutation l l. simple induction l. apply permutation_nil. intros a l1 H. apply permutation_skip with (1 := H). Qed. Hint Resolve permutation_refl. (************************************** Symmetry **************************************) Theorem permutation_sym : forall l m : list A, permutation l m -> permutation m l. intros l1 l2 H'; elim H'. apply permutation_nil. intros a l1' l2' H1 H2. apply permutation_skip with (1 := H2). intros a b l1'. apply permutation_swap. intros l1' l2' l3' H1 H2 H3 H4. apply permutation_trans with (1 := H4) (2 := H2). Qed. (************************************** Compatibility with list length **************************************) Theorem permutation_length : forall l m : list A, permutation l m -> length l = length m. intros l m H'; elim H'; simpl in |- *; auto. intros l1 l2 l3 H'0 H'1 H'2 H'3. rewrite <- H'3; auto. Qed. (************************************** A permutation of the nil list is the nil list **************************************) Theorem permutation_nil_inv : forall l : list A, permutation l nil -> l = nil. intros l H; generalize (permutation_length _ _ H); case l; simpl in |- *; auto. intros; discriminate. Qed. (************************************** A permutation of the singleton list is the singleton list **************************************) Let permutation_one_inv_aux : forall l1 l2 : list A, permutation l1 l2 -> forall a : A, l1 = a :: nil -> l2 = a :: nil. intros l1 l2 H; elim H; clear H l1 l2; auto. intros a l3 l4 H0 H1 b H2. injection H2; intros; subst; auto. rewrite (permutation_nil_inv _ (permutation_sym _ _ H0)); auto. intros; discriminate. Qed. Theorem permutation_one_inv : forall (a : A) (l : list A), permutation (a :: nil) l -> l = a :: nil. intros a l H; apply permutation_one_inv_aux with (l1 := a :: nil); auto. Qed. (************************************** Compatibility with the belonging **************************************) Theorem permutation_in : forall (a : A) (l m : list A), permutation l m -> In a l -> In a m. intros a l m H; elim H; simpl in |- *; auto; intuition. Qed. (************************************** Compatibility with the append function **************************************) Theorem permutation_app_comp : forall l1 l2 l3 l4, permutation l1 l2 -> permutation l3 l4 -> permutation (l1 ++ l3) (l2 ++ l4). intros l1 l2 l3 l4 H1; generalize l3 l4; elim H1; clear H1 l1 l2 l3 l4; simpl in |- *; auto. intros a b l l3 l4 H. cut (permutation (l ++ l3) (l ++ l4)); auto. intros; apply permutation_trans with (a :: b :: l ++ l4); auto. elim l; simpl in |- *; auto. intros l1 l2 l3 H H0 H1 H2 l4 l5 H3. apply permutation_trans with (l2 ++ l4); auto. Qed. Hint Resolve permutation_app_comp. (************************************** Swap two sublists **************************************) Theorem permutation_app_swap : forall l1 l2, permutation (l1 ++ l2) (l2 ++ l1). intros l1; elim l1; auto. intros; rewrite <- app_nil_end; auto. intros a l H l2. replace (l2 ++ a :: l) with ((l2 ++ a :: nil) ++ l). apply permutation_trans with (l ++ l2 ++ a :: nil); auto. apply permutation_trans with (((a :: nil) ++ l2) ++ l); auto. simpl in |- *; auto. apply permutation_trans with (l ++ (a :: nil) ++ l2); auto. apply permutation_sym; auto. replace (l2 ++ a :: l) with ((l2 ++ a :: nil) ++ l). apply permutation_app_comp; auto. elim l2; simpl in |- *; auto. intros a0 l0 H0. apply permutation_trans with (a0 :: a :: l0); auto. apply (app_ass l2 (a :: nil) l). apply (app_ass l2 (a :: nil) l). Qed. (************************************** A transposition is a permutation **************************************) Theorem permutation_transposition : forall a b l1 l2 l3, permutation (l1 ++ a :: l2 ++ b :: l3) (l1 ++ b :: l2 ++ a :: l3). intros a b l1 l2 l3. apply permutation_app_comp; auto. change (permutation ((a :: nil) ++ l2 ++ (b :: nil) ++ l3) ((b :: nil) ++ l2 ++ (a :: nil) ++ l3)) in |- *. repeat rewrite <- app_ass. apply permutation_app_comp; auto. apply permutation_trans with ((b :: nil) ++ (a :: nil) ++ l2); auto. apply permutation_app_swap; auto. repeat rewrite app_ass. apply permutation_app_comp; auto. apply permutation_app_swap; auto. Qed. (************************************** An element of a list can be put on top of the list to get a permutation **************************************) Theorem in_permutation_ex : forall a l, In a l -> exists l1 : list A, permutation (a :: l1) l. intros a l; elim l; simpl in |- *; auto. intros H; case H; auto. intros a0 l0 H [H0| H0]. exists l0; rewrite H0; auto. case H; auto; intros l1 Hl1; exists (a0 :: l1). apply permutation_trans with (a0 :: a :: l1); auto. Qed. (************************************** A permutation of a cons can be inverted **************************************) Let permutation_cons_ex_aux : forall (a : A) (l1 l2 : list A), permutation l1 l2 -> forall l11 l12 : list A, l1 = l11 ++ a :: l12 -> exists l3 : list A, (exists l4 : list A, l2 = l3 ++ a :: l4 /\ permutation (l11 ++ l12) (l3 ++ l4)). intros a l1 l2 H; elim H; clear H l1 l2. intros l11 l12; case l11; simpl in |- *; intros; discriminate. intros a0 l1 l2 H H0 l11 l12; case l11; simpl in |- *. exists (nil (A:=A)); exists l1; simpl in |- *; split; auto. injection H1; intros; subst; auto. injection H1; intros H2 H3; rewrite <- H2; auto. intros a1 l111 H1. case (H0 l111 l12); auto. injection H1; auto. intros l3 (l4, (Hl1, Hl2)). exists (a0 :: l3); exists l4; split; simpl in |- *; auto. injection H1; intros; subst; auto. injection H1; intros H2 H3; rewrite H3; auto. intros a0 b l l11 l12; case l11; simpl in |- *. case l12; try (intros; discriminate). intros a1 l0 H; exists (b :: nil); exists l0; simpl in |- *; split; auto. injection H; intros; subst; auto. injection H; intros H1 H2 H3; rewrite H2; auto. intros a1 l111; case l111; simpl in |- *. intros H; exists (nil (A:=A)); exists (a0 :: l12); simpl in |- *; split; auto. injection H; intros; subst; auto. injection H; intros H1 H2 H3; rewrite H3; auto. intros a2 H1111 H; exists (a2 :: a1 :: H1111); exists l12; simpl in |- *; split; auto. injection H; intros; subst; auto. intros l1 l2 l3 H H0 H1 H2 l11 l12 H3. case H0 with (1 := H3). intros l4 (l5, (Hl1, Hl2)). case H2 with (1 := Hl1). intros l6 (l7, (Hl3, Hl4)). exists l6; exists l7; split; auto. apply permutation_trans with (1 := Hl2); auto. Qed. Theorem permutation_cons_ex : forall (a : A) (l1 l2 : list A), permutation (a :: l1) l2 -> exists l3 : list A, (exists l4 : list A, l2 = l3 ++ a :: l4 /\ permutation l1 (l3 ++ l4)). intros a l1 l2 H. apply (permutation_cons_ex_aux a (a :: l1) l2 H nil l1); simpl in |- *; auto. Qed. (************************************** A permutation can be simply inverted if the two list starts with a cons **************************************) Theorem permutation_inv : forall (a : A) (l1 l2 : list A), permutation (a :: l1) (a :: l2) -> permutation l1 l2. intros a l1 l2 H; case permutation_cons_ex with (1 := H). intros l3 (l4, (Hl1, Hl2)). apply permutation_trans with (1 := Hl2). generalize Hl1; case l3; simpl in |- *; auto. intros H1; injection H1; intros H2; rewrite H2; auto. intros a0 l5 H1; injection H1; intros H2 H3; rewrite H2; rewrite H3; auto. apply permutation_trans with (a0 :: l4 ++ l5); auto. apply permutation_skip; apply permutation_app_swap. apply (permutation_app_swap (a0 :: l4) l5). Qed. (************************************** Take a list and return tle list of all pairs of an element of the list and the remaining list **************************************) Fixpoint split_one (l : list A) : list (A * list A) := match l with | nil => nil (A:=A * list A) | a :: l1 => (a, l1) :: map (fun p : A * list A => (fst p, a :: snd p)) (split_one l1) end. (************************************** The pairs of the list are a permutation **************************************) Theorem split_one_permutation : forall (a : A) (l1 l2 : list A), In (a, l1) (split_one l2) -> permutation (a :: l1) l2. intros a l1 l2; generalize a l1; elim l2; clear a l1 l2; simpl in |- *; auto. intros a l1 H1; case H1. intros a l H a0 l1 [H0| H0]. injection H0; intros H1 H2; rewrite H2; rewrite H1; auto. generalize H H0; elim (split_one l); simpl in |- *; auto. intros H1 H2; case H2. intros a1 l0 H1 H2 [H3| H3]; auto. injection H3; intros H4 H5; (rewrite <- H4; rewrite <- H5). apply permutation_trans with (a :: fst a1 :: snd a1); auto. apply permutation_skip. apply H2; auto. case a1; simpl in |- *; auto. Qed. (************************************** All elements of the list are there **************************************) Theorem split_one_in_ex : forall (a : A) (l1 : list A), In a l1 -> exists l2 : list A, In (a, l2) (split_one l1). intros a l1; elim l1; simpl in |- *; auto. intros H; case H. intros a0 l H [H0| H0]; auto. exists l; left; subst; auto. case H; auto. intros x H1; exists (a0 :: x); right; auto. apply (in_map (fun p : A * list A => (fst p, a0 :: snd p)) (split_one l) (a, x)); auto. Qed. (************************************** An auxillary function to generate all permutations **************************************) Fixpoint all_permutations_aux (l : list A) (n : nat) {struct n} : list (list A) := match n with | O => nil :: nil | S n1 => flat_map (fun p : A * list A => map (cons (fst p)) (all_permutations_aux (snd p) n1)) ( split_one l) end. (************************************** Generate all the permutations **************************************) Definition all_permutations (l : list A) := all_permutations_aux l (length l). (************************************** All the elements of the list are permutations **************************************) Let all_permutations_aux_permutation : forall (n : nat) (l1 l2 : list A), n = length l2 -> In l1 (all_permutations_aux l2 n) -> permutation l1 l2. intros n; elim n; simpl in |- *; auto. intros l1 l2; case l2. simpl in |- *; intros H0 [H1| H1]. rewrite <- H1; auto. case H1. simpl in |- *; intros; discriminate. intros n0 H l1 l2 H0 H1. case in_flat_map_ex with (1 := H1). clear H1; intros x; case x; clear x; intros a1 l3 (H1, H2). case in_map_inv with (1 := H2). simpl in |- *; intros y (H3, H4). rewrite H4; auto. apply permutation_trans with (a1 :: l3); auto. apply permutation_skip; auto. apply H with (2 := H3). apply eq_add_S. apply trans_equal with (1 := H0). change (length l2 = length (a1 :: l3)) in |- *. apply permutation_length; auto. apply permutation_sym; apply split_one_permutation; auto. apply split_one_permutation; auto. Qed. Theorem all_permutations_permutation : forall l1 l2 : list A, In l1 (all_permutations l2) -> permutation l1 l2. intros l1 l2 H; apply all_permutations_aux_permutation with (n := length l2); auto. Qed. (************************************** A permutation is in the list **************************************) Let permutation_all_permutations_aux : forall (n : nat) (l1 l2 : list A), n = length l2 -> permutation l1 l2 -> In l1 (all_permutations_aux l2 n). intros n; elim n; simpl in |- *; auto. intros l1 l2; case l2. intros H H0; rewrite permutation_nil_inv with (1 := H0); auto with datatypes. simpl in |- *; intros; discriminate. intros n0 H l1; case l1. intros l2 H0 H1; rewrite permutation_nil_inv with (1 := permutation_sym _ _ H1) in H0; discriminate. clear l1; intros a1 l1 l2 H1 H2. case (split_one_in_ex a1 l2); auto. apply permutation_in with (1 := H2); auto with datatypes. intros x H0. apply in_flat_map with (b := (a1, x)); auto. apply in_map; simpl in |- *. apply H; auto. apply eq_add_S. apply trans_equal with (1 := H1). change (length l2 = length (a1 :: x)) in |- *. apply permutation_length; auto. apply permutation_sym; apply split_one_permutation; auto. apply permutation_inv with (a := a1). apply permutation_trans with (1 := H2). apply permutation_sym; apply split_one_permutation; auto. Qed. Theorem permutation_all_permutations : forall l1 l2 : list A, permutation l1 l2 -> In l1 (all_permutations l2). intros l1 l2 H; unfold all_permutations in |- *; apply permutation_all_permutations_aux; auto. Qed. (************************************** Permutation is decidable **************************************) Definition permutation_dec : (forall a b : A, {a = b} + {a <> b}) -> forall l1 l2 : list A, {permutation l1 l2} + {~ permutation l1 l2}. intros H l1 l2. case (In_dec (list_eq_dec H) l1 (all_permutations l2)). intros i; left; apply all_permutations_permutation; auto. intros i; right; contradict i; apply permutation_all_permutations; auto. Defined. End permutation. (************************************** Hints **************************************) Hint Constructors permutation. Hint Resolve permutation_refl. Hint Resolve permutation_app_comp. Hint Resolve permutation_app_swap. (************************************** Implicits **************************************) Implicit Arguments permutation [A]. Implicit Arguments split_one [A]. Implicit Arguments all_permutations [A]. Implicit Arguments permutation_dec [A]. (************************************** Permutation is compatible with map **************************************) Theorem permutation_map : forall (A B : Set) (f : A -> B) l1 l2, permutation l1 l2 -> permutation (map f l1) (map f l2). intros A B f l1 l2 H; elim H; simpl in |- *; auto. intros l0 l3 l4 H0 H1 H2 H3; apply permutation_trans with (2 := H3); auto. Qed. Hint Resolve permutation_map. (************************************** Permutation of a map can be inverted *************************************) Let permutation_map_ex_aux : forall (A B : Set) (f : A -> B) l1 l2 l3, permutation l1 l2 -> l1 = map f l3 -> exists l4, permutation l4 l3 /\ l2 = map f l4. intros A1 B1 f l1 l2 l3 H; generalize l3; elim H; clear H l1 l2 l3. intros l3; case l3; simpl in |- *; auto. intros H; exists (nil (A:=A1)); auto. intros; discriminate. intros a0 l1 l2 H H0 l3; case l3; simpl in |- *; auto. intros; discriminate. intros a1 l H1; case (H0 l); auto. injection H1; auto. intros l5 (H2, H3); exists (a1 :: l5); split; simpl in |- *; auto. injection H1; intros; subst; auto. intros a0 b l l3; case l3. intros; discriminate. intros a1 l0; case l0; simpl in |- *. intros; discriminate. intros a2 l1 H; exists (a2 :: a1 :: l1); split; simpl in |- *; auto. injection H; intros; subst; auto. intros l1 l2 l3 H H0 H1 H2 l0 H3. case H0 with (1 := H3); auto. intros l4 (HH1, HH2). case H2 with (1 := HH2); auto. intros l5 (HH3, HH4); exists l5; split; auto. apply permutation_trans with (1 := HH3); auto. Qed. Theorem permutation_map_ex : forall (A B : Set) (f : A -> B) l1 l2, permutation (map f l1) l2 -> exists l3, permutation l3 l1 /\ l2 = map f l3. intros A0 B f l1 l2 H; apply permutation_map_ex_aux with (l1 := map f l1); auto. Qed. (************************************** Permutation is compatible with flat_map **************************************) Theorem permutation_flat_map : forall (A B : Set) (f : A -> list B) l1 l2, permutation l1 l2 -> permutation (flat_map f l1) (flat_map f l2). intros A B f l1 l2 H; elim H; simpl in |- *; auto. intros a b l; auto. repeat rewrite <- app_ass. apply permutation_app_comp; auto. intros k3 l4 l5 H0 H1 H2 H3; apply permutation_trans with (1 := H1); auto. Qed.