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Abstract

This note presents a formalisation done in Coq of Lucas-Lehmer

test and Pocklington certificate for prime numbers. They both are

direct consequences of Fermat little theorem. Fermat little theorem

is proved using elementary group theory and in particular Lagrange

theorem.

1 Definitions and Notations

In order to present our formalsation, we first need to introduce some functions
and predicates over natural numbers, lists and sets.

1.1 Natural numbers

The predicates over the natural numbers are the following:

- Divisibility: n divides m, written n |m, if there exists a number q
such that m = nq.

- Primality: p is prime, written prime(p), if p has exactly two positive
divisors 1 and p.

- CoPrimality: p and q are co-prime, written coprime(p, q), if 1 is their
unique positive common divisor.

- Modulo: p is equal to q modulo n, written p ≡ q [n], if n divides p−q.

and the functions are:
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- Gcd: the greatest common divisor of two numbers p and q is written
pˆq.

- Quotient: the integer quotient of the division of p by q is written p/q.

- Remainder: the remainder of the division of p by q is written p mod q.

- Euler function: Φ(n) =
∑n−1

i=1 (if coprime(i, n) then 1 else 0).

1.2 Lists

Lists are denoted as [a1, a2, . . . , an]. We write the size of a list L as |L|, the
concatenation of two lists L1, L2 as L1 + L2 and the fact that an element a
belongs to a list L as a ∈ L.

1.3 Sets

Sets are denoted as {a1, a2, . . . , an}. We write the size of a set G as |G| , the
fact that an element a belongs to a set G as a ∈ G, the fact that a set G1 is
included in a set G2 as G1 ⊂ G2. Over sets, we define the notions of finite
monoid and finite group:

- Finite Monoid: (G, ∗) is a finite monoid, iff

G is finite: G = {e, a1, a2, ..., an},
the operation ∗ is internal: if a ∈ G and b ∈ G then ab ∈ G,

the operation ∗ is associative: a(bc) = (ab)c,

the element e is neutral: ea = a = ae.

- Finite Group: (G, ∗) is a finite group, iff

G is finite: G = {e, a1, a2, ..., an},
the operation ∗ is internal: if a ∈ G and b ∈ G then ab ∈ G,

the operation ∗ is associative: a(bc) = (ab)c,

the element e is neutral: ea = a = ae,

every element has an inverse: aa−1 = e = a−1a.

A group (H, ∗) is a subgroup of a group (G, ∗) if G ⊂ H.
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2 Basic Theorems

Four basic theorems are mainly needed for our development: Gauss theorem
for division, Bezout theorem for gcd, the fact thatΦ(p) = p − 1 for p prime
and Lagrange for the cardinality of subgroup.

Theorem 2.1 (Gauss) If m |np and coprime(m,n) then m | p.

This theorem does not belong to our development, nevertheless we outline
its proof. The key point of the proof is that divisibility is compatible with the
substraction: if m |n and m | p then m |n − p. Now, we have the hypothesis
m |np and we also have that m |mp. Remembering Euclid algorithm and
using the compatibility of the substraction we can derive that m | (mˆn)p.
As we have coprime(m,n), we get the expected result m | p.

Theorem 2.2 (Bezout) Let m and n be two integers, then there exist u
and v such that mu + nv = mˆn.

Once again the proof of this theorem follows Euclid algorithm to compute
the gcd of m and n.

Theorem 2.3 Let p be a prime number, Φ(p) = p − 1

Since p is prime, if 1 ≤ i < p then coprime(i, p), so Φ(p) = p − 1.

Theorem 2.4 (Lagrange) If (H, ∗) is a subground of (G, ∗) then |H| | |G|.

Let H = {e, a1, a2, . . . , an} and G = {e, b1, b2, . . . , bm}, we have H ⊂ G. We
build the increasing sequence (Li)i≤m of lists as follows:

L0 = [e, a1, a2 . . . an];

if bi+1 ∈ Li, Li+1 = Li;

if bi+1 6∈ Li, Li+1 = [bi+1e, bi+1a1, bi+1a2, . . . , bi+1an] + Li.

We use the convention that a0 = e and b0 = e. It is easy to show that for
all i ≤ m we have |H| | |Li| and bi ∈ Lm. We are left with proving that
|Lm| = |Hm|. To do so, we just need to show that the elements of H occurs
only once in Lm. By contradiction, suppose bk occurs more than once in Lm.
There are two possibilities: either there exists i such that bk occurs more than
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once in Li but not in Li−1
1, or bk occurs in Li and Li−Li−1. In the first case,

there exist u and v, biau = bk = biav. Simplifying by b−1
i , we get au = av. So

as G is a set, we have u = v. This contradicts the fact that bk occurs more
than once in Li. In the second case, there exist u, v and j with j < i such
that biau = bk = bjav. Simplifying by a−1

u , we get bi = bj(ava
−1
u ). As av ∈ G

and au ∈ G, there exists a l such that bi = bjal, so bi ∈ Lj. This contradicts
the fact that bi 6∈ Li−1 that is true by construction since Li 6= Li−1.

3 Group of invertible elements

From a monoid we can extract a group by taking its invertible elements.
This section explicits how this group is constructed and states some basic
properties.

Definition 3.1 Let (G, ∗) be a finite monoid, we define I(G) as {a ∈ G | ∃c ∈
G, ca = e = ac}.

Theorem 3.1 Let (G, ∗) be a finite monoid, (I(G), ∗) is a finite subgroup.

I(G) is finite since I(G) ⊂ G. The operation is internal since if a and b are
in I(G), then there exist c and d such that ac = e = ca and bd = e = db.
It follows that (ab)(dc) = e = (dc)(ab) so ab ∈ I(G). The operative is
associative since (G, ∗) is a monoid. We have ee = e = ee, so e ∈ I(G) and
as it is a neutral element in G, it is also a neutral element in I(G). Every
element has an inverse by construction.

Definition 3.2 Given n, we define Z/nZ as {i | 0 ≤ i < n} .

Definition 3.3 Given n, we define the operation ⊗ as a ⊗ b = (ab) modn.

Theorem 3.2 Given n, (Z/nZ,⊗) is a finite monoid.

Z/nZ is finite. The operation ⊗ is internal since 0 ≤ a modn < n. The
operation is associative since a ⊗ (b ⊗ c) = (abc) modn = (a ⊗ b) ⊗ c. 1 is a
neutral element. Note that operation ⊗ is also commutative.

Definition 3.4 Given n, we define (Z/nZ)∗ as I(Z/nZ).

1 This includes also the degenerated case where bk occurs twice in L0
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Theorem 3.3 Given n, ((Z/nZ)∗,⊗) is a finite group.

This is a direct consequence of Theorems 3.2 and 3.1.

Theorem 3.4 Given a number n, |(Z/nZ)∗| = Φ(n).

Let a ∈ (Z/nZ)∗, so there exists c such that a ⊗ c = 1. So (ac) modn = 1,
n | ac − 1 and there exists a d such that ac − dn = 1 so by Theorem 2.2, we
have coprime(a, n). Reciprocally if coprime(a, n) by Theorem 2.2 there exist
u and v such that ua + vn = 1, so u ⊗ a = 1.

Theorem 3.5 Given a prime number p, |(Z/pZ)∗| = p − 1.

This is a direct consequence of Theorems 2.3 and 3.4.

4 Order of an element

Given an element a of a group, we can construct a subgroup by repetitively
multiplying a by itself. The cardinality of this subgroup is called the order

of the element. This section explicits this constructed and state some basic
properties. The last one is the famous Fermat Little Theorem which is at
the base of Pocklington certificate.

Definition 4.1 Let (G, ∗) be a finite group and a an element of G, we define

Ha = {ai|i ∈ N},

Note that in the definition, we take as convention that a0 = e.

Definition 4.2 Let (G, ∗) be a finite group and a be an element of G, we

define o(a), the order of the element a, as the smallest number such that there

exists k < o(a) such that ak = ao(a).

First of all, Ha is finite since Ha ⊂ G. It follows there is a least one repetition
in [1, a, a2, . . . a|G|]. So the definition of o(a) makes sense.

Theorem 4.1 Let (G, ∗) be a finite group and a be an element of G, we have

ao(a) = e.

There exists k < o(a) such that ak = ao(a). Multiplying on both side by a−k

we get a0 = ao(a)−k. Since o(a) was the smallest number for which there is a
repetition, it implies that k = 0 and ao(a) = e.
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Theorem 4.2 Let (G, ∗) be a finite group, a be an element of G and n be a

number, an = e if and only if o(a) |n.

Suppose an = e, by Definition 4.2, we have o(a) ≤ n. Iteratively multiplying

by a−o(a) on both side of the equation an = e we get an mod o(a) = e. Since
n mod o(a) < o(a), it implies that n mod o(a) = 0 so o(a) |n. Conversely,
suppose o(a) |n, so there exists k such that n = ko(a). We have an =

ako(a) = (ao(a))
k

= ek = e.

Theorem 4.3 Let (G, ∗) be a finite group and a be an element of G, Ha =
{1, a, a2, . . . , ao(a)−1} and |Ha| = o(a).

This is a direct consequence of Definition 4.1 and Theorem 4.1.

Theorem 4.4 Let (G, ∗) be a finite group and a an element of G, (Ha, ∗) is

a finite subgroup of (G, ∗).
Ha is finite. The operation ∗ is internal since aiaj = ai+j. The operation ∗ is
associative since ai(ajak) = ai+j+k = (aiaj)ak. Every element has an inverse
aiao(a)−i = e = ao(a)−iai. Note that this group is also commutative.

Theorem 4.5 Let (G, ∗) be a finite group and a an element of G, we have

o(a) | |G|.
This is a direct consequence of Theorem 2.4 and |Ha| = o(a).

Theorem 4.6 Let n be a number and a ∈ (Z/nZ)∗, we have o(a) |Φ(n).

This is a direct consequence of Theorems 4.5 and 3.4.

Theorem 4.7 Let p be a prime number and a ∈ (Z/pZ)∗, we have o(a) | p−1.

This is a direct consequence of Theorems 4.5 and 3.5

Theorem 4.8 Let n be a number and coprime(a, n) then aΦ(n) ≡ 1 [p].

As aˆb = (a mod b)ˆb and ai ≡ (a modn)i [n], we can restrict ourselves to
the case in which a ∈ (Z/nZ)∗. Using Theorem 4.6, we have o(a) |Φ(n). By
definition of the order, it follows that aΦ(n) ≡ ako(a) ≡ (ao(a))k ≡ 1k ≡ 1 [p]
for some k.

Theorem 4.9 (Fermat Little Theorem) If prime(p) and coprime(a, p)
then ap−1 ≡ 1 [p].

This is a direct consequence of Theorems 2.3 and 4.8.
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5 Lucas-Lehmer test

The previous sections have introduced all the material needed to present
Lucas-Lehmer test. This test gives a direct way of checking primality for
Mersenne numbers.

Definition 5.1 Let n be a number, we define Kn as (Z/nZ)2
, i.e. Kn =

{(a, b) | 0 ≤ a ≤ n and 0 ≤ b ≤ n}.

Definition 5.2 we define the operation ⊕ as (a1, b1) ⊕ (a2, b2) = ((a1 +
b1) modn, (b1 + bn) modn).

Definition 5.3 we define the operation � as (a1, b1) � (a2, b2) = ((a1a2 +
3b1b2) modn, (a1b2 + a2b1) modn).

Definition 5.4 we define the power as (a, b)n = (a, b) � (a, b) . . . (a, b)
︸ ︷︷ ︸

n

.

Definition 5.5 For n > 1, we define two elements of Kn w as (2, 1), v as

(2, n−1) and we define the sequence (Sm)m∈N over the natural numbers such

that S0 = 4 and Sm+1 = S2
m − 2.

Theorem 5.1 For n > 1, we have w � v = (1, 0),

We have

w � v = (2, 1) � (2, n − 1)

= ((4 + 3(n − 1)) modn, (2 ∗ (n − 1) + 2) modn)

= (1, 0)

Theorem 5.2 For n > 1, we have w2m−1 ⊕ v2m−1
= (Sm modn, 0), for

m > 1.

We prove this by induction.
If m = 1, we have w + v = (2, 1) ⊕ (2, n − 1) = (4 modn, n modn) =
(4 modn, 0).
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If we suppose that w2m−1 ⊕ v2m−1
= (Sm modn, 0), squaring on both side

gives

(w2m−1 ⊕ v2m−1

) � (w2m−1 ⊕ v2m−1

) = (Sm modn, 0) � (Sm modn, 0)

Using the distributivity, commutativity and associativity gives us

(w2m ⊕ v2m

) ⊕ (2, 0) � (w2m−1

v2m−1

) = (S2
m modn, 0)

For the left side, using some properties of exponentiation we get:

(w2m ⊕ v2m

) ⊕ (2, 0) � (w2m−1

v2m−1

) = (w2m ⊕ v2m

) ⊕ (2, 0) � ((wv)2m−1

)

= (w2m ⊕ v2m

) ⊕ (2, 0) � (1, 0)2m−1

= (w2m ⊕ v2m

) ⊕ (2, 0)

For the right side, using Definition 5.5 we get:

(S2
m modn, 0) = ((Sm+1 + 2) modn, 0) = (Sm+1 modn, 0) ⊕ (2, 0)

Simplifying by (2, 0) on both side, we get

(w2m ⊕ v2m

) = (Sm+1 modn, 0)

Theorem 5.3 For n > 1 and m > 1, if we have w2m−2 ⊕ v2m−2
= (0, 0),

then w2m−1 6= (1, 0) and w2m

= (1, 0).

Multiplying the left side by w2m−2
we get

w2m−2 � (w2m−2 ⊕ v2m−2

) = (w2m−2 � w2m−2

) ⊕ (w2m−2 � v2m−2

)

= w2m−1 ⊕ (wv)2m−2

= w2m−1 ⊕ (1, 0)2m−2

= w2m−1 ⊕ (1, 0)

So we get w2m−1
= −(1, 0) = (n − 1, 0) 6= (1, 0) since n > 1. Squaring

w2m−1
= −(1, 0) we get w2m

= (1, 0).

Definition 5.6 (Mersenne numbers) Mp is the pth Mersenne if Mp =
2p − 1.
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Theorem 5.4 (Lucas-Lehmer Test) If p > 2 and Mp |Sp−1 then Mp is

prime.

The proof is by contradiction. We suppose that Mp is composite, so there
exists an n such that 1 < n ≤

√
Mp and n |Mp. We consider K∗

n = I(Kn).
As (0, 0) 6∈ K∗

n, we have |K∗
n| ≤ n2 − 1 < Mp. By Theorem 5.1, we have

w� v = (1, 0), so w ∈ K∗
n. We have n |Mp and Mp |Sp−1, so Sp−1 modn = 0.

By Theorem 5.2, we get w2m−2 ⊕ v2m−2
= (0, 0). By Theorem 5.3, we deduce

that w2m−1 6= (1, 0) and w2m

= (1, 0). By Theorem 4.2, we have o(w) | 2m.
We deduce that o(w) = 2p for some p ≤ m. If p < m, we would have w2m−1

=

w2p+(m−1−p)
= (w2p

)2m−1−p

= (1, 0), so o(w) = 2p. But by Theorem 4.5, we
have o(a) | |K∗

n|, so in particular we have 2p ≤ |K∗
n|. Putting everything

together, we get a contradiction 2p ≤ |K∗
n| ≤ n2 − 1 < Mp = 2p − 1.

6 Pocklington certificate

Pocklington certificate let us assess the primality of a number n by collecting
enough factors of n−1 and showing that these factors verify a given relation.

Theorem 6.1 (Pocklington) If F1 > 1, R1 > 0 and N − 1 = F1R1, if we

have that for each prime number p such that p |F1 there exists an a such that

aN−1 ≡ 1 [N ] and (a(N−1)/p − 1)ˆN = 1, then for each prime n such that

n |N we have n ≡ 1 [F1].

To prove n ≡ 1 [F1], we show that F1 |n − 1. It is enough to prove that
pα |n− 1 for each prime number p such that pα |F1. If α ≥ 1, we have p |F1.
So there exists a such that aN−1 ≡ 1 [N ] and (a(N−1)/p − 1)ˆN = 1. We have
a modn ∈ (Z/nZ)∗, so o(a modn) makes sense. We are going to prove that
pα | o(a modn) which is enough since o(a modn) |n − 1 by Theorem 4.7. We
have n |N , so aN−1 ≡ 1 [N ] implies (a modn)N−1 ≡ 1 [n]. By Theorem 4.2
we get o(a modn) |N−1. We have also (a(N−1)/p − 1)ˆN = 1, so in particular
as n |N we have (a(N−1)/p − 1)ˆn = 1. If we had o(a modn) | (N − 1)/p, by
Theorem 4.2 we would get that a(N−1)/p ≡ 1 [n], so we would have n =
(a(N−1)/p − 1)ˆn. To sum up, we have that o(a modn) |N − 1 but also that
o(a modn) 6 | (N − 1)/p. This means that o(a modn) contains all the power
of p, i.e. for all β such that pβ |N −1 we have pβ | o(a modn). So we get that
pα | o(a modn).
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Theorem 6.2 If F1 > 1, F1 |N − 1 and F1 >
√

N , if we have that for each

prime number p such that p |F1 there exists an a such that aN−1 ≡ 1 [N ]
and (a(N−1)/p − 1)ˆN = 1, then N is prime.

This is a direct corollary of Theorem 6.1. If N was composite, there would
be an n such that 1 < n ≤

√
N and n |N . We have n ≤

√
N < F1 and

by Theorem 6.1 we also have n ≡ 1 [F1]. So we deduce that n = 1 which
contradicts 1 < n.

Now we can derive two usual tests from this last corollary.

Definition 6.1 (Fermat numbers) Fp is the pth Fermat number if Fp =
22p − 1.

Theorem 6.3 (Pepin Test) If p > 1 and 3(Fp−1)/2 ≡ −1 [Fp] then Fp is

prime.

This is a direct application of Theorem 6.2 with a = 3 and F1 = 22p

.

Theorem 6.4 (Proth Test) If p = h2k +1 with 2k > h and there exists an

a such that a(n−1)/2 ≡ −1 [p] then p is prime.

This is a direct application of Theorem 6.2 with F1 = 2k.
Theorem 6.2 requires to be able to factorize N − 1 till

√
N . We can do

considerably better ( 3
√

N/2 instead of
√

N) with the following theorem.

Theorem 6.5 Let F1 > 1, R1 > 0 and N − 1 = F1R1, such that F1 is

even and R1 is odd, let m ≥ 1 , s := R1/(2F1), r = R1 mod (2F1) such that

N < (mF1 +1)∗ (2F 2
1 +(r−m)F1 +1) and for all λ such that 1 ≤ λ < m, we

have (λF1 + 1) 6 |N , if for each prime number p such that p |F1 there exists

an a such that aN−1 ≡ 1 [N ] and (a(N−1)/p − 1)ˆN = 1, then if s = 0 or

r2 − 8s is not a square then N is prime.

We proceed by contradiction. Suppose that N is composite, we are going
to prove that s 6= 0 and r2 − 8s is a square. N is composite, so there exist
K1, K2 such that N = K1K2. By Theorem 6.1 we know that Ki ≡ 1 [F1].
So there exist c, d such that N = (cF1 + 1)(dF1 + 1). Furthermore the fact
that for all λ such that 1 ≤ λ < m, we have (λF1 + 1) 6 |N gives us that
c ≥ m and d ≥ m. We have N − 1 = F1R1 and N = cdF 2

1 + (c + d)F1 + 1
so R1 = cdF1 + (c + d). We have also that R1 is odd and F1 is even, so
cdF1 is even which implies that c + d is odd. So cd must be even. We
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have R1 = (cd/2)2F1 + (c + d) and by definition of s and r we have also
R1 = s2F1 + r. If we manage to prove that c + d = r we are done since
s = (cd/2) 6= 0 and r2 − 8s = (c + d)2 − 4cd = (c − d)2.

To prove c + d = r, as we have (cd/2)2F1 + (c + d) = s2F1 + r and
r = R1 mod (2F1) we know that r = c + d mod (2F1) , we then just need to
prove that (c + d) − r < 2F1 to conclude. We have

(mF1 + 1) ∗ (2F 2
1 + (r − m)F1 + 1) > N = cdF 2

1 + (c + d)F1 + 1

We have (c − m)(d − m) ≥ 0, so cd ≥ m(c + d) − m2. Using this inequality
to minor the right side of the previous equation we get:

(mF1 + 1) ∗ (2F 2
1 + (r − m)F1 + 1) > (m(c + d) − m2)F 2

1 + (c + d)F1 + 1

= (mF1 + 1)(((c + d) − m)F1 + 1)

Simplifying we get 2F 2
1 +(r−m)F1+1 > ((c+d)−m)F1+1 so (c+d)−r < 2F1.
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