(*************************************************************) (* This file is distributed under the terms of the *) (* GNU Lesser General Public License Version 2.1 *) (*************************************************************) (* Benjamin.Gregoire@inria.fr Laurent.Thery@inria.fr *) (*************************************************************) (********************************************************************** Lagrange.v Proof of Lagrange theorem: the oder of a subgroup divides the order of a group Definition: lagrange **********************************************************************) Require Import Coq.Lists.List. Require Import Coqprime.UList. Require Import Coqprime.ListAux. Require Import Coq.ZArith.ZArith Coq.ZArith.Znumtheory. Require Import Coqprime.NatAux. Require Import Coqprime.FGroup. Open Scope Z_scope. Section Lagrange. Variable A: Set. Variable A_dec: forall a b: A, {a = b} + {~ a = b}. Variable op: A -> A -> A. Variable G: (FGroup op). Variable H:(FGroup op). Hypothesis G_in_H: (incl G.(s) H.(s)). (************************************** A group and a subgroup have the same neutral element **************************************) Theorem same_e_for_H_and_G: H.(e) = G.(e). apply trans_equal with (op H.(e) H.(e)); sauto. apply trans_equal with (op H.(e) (op G.(e) (H.(i) G.(e)))); sauto. eq_tac; sauto. apply trans_equal with (op G.(e) (op G.(e) (H.(i) G.(e)))); sauto. repeat rewrite H.(assoc); sauto. eq_tac; sauto. apply trans_equal with G.(e); sauto. apply trans_equal with (op G.(e) H.(e)); sauto. eq_tac; sauto. Qed. (************************************** The proof works like this. If G = {e, g1, g2, g3, .., gn} and {e, h1, h2, h3, ..., hm} we construct the list mkGH {e, g1, g2, g3, ...., gn hi*e, hi * g1, hi * g2, ..., hi * gn if hi does not appear before .... hk*e, hk * g1, hk * g2, ..., hk * gn if hk does not appear before } that contains all the element of H. We show that this list does not contain double (ulist). **************************************) Fixpoint mkList (base l: (list A)) { struct l} : (list A) := match l with nil => nil | cons a l1 => let r1 := mkList base l1 in if (In_dec A_dec a r1) then r1 else (map (op a) base) ++ r1 end. Definition mkGH := mkList G.(s) H.(s). Theorem mkGH_length: divide (length G.(s)) (length mkGH). unfold mkGH; elim H.(s); simpl. exists 0%nat; auto with arith. intros a l1 (c, H1); case (In_dec A_dec a (mkList G.(s) l1)); intros H2. exists c; auto. exists (1 + c)%nat; rewrite ListAux.length_app; rewrite ListAux.length_map; rewrite H1; ring. Qed. Theorem mkGH_incl: incl H.(s) mkGH. assert (H1: forall l, incl l H.(s) -> incl l (mkList G.(s) l)). intros l; elim l; simpl; auto with datatypes. intros a l1 H1 H2. case (In_dec A_dec a (mkList (s G) l1)); auto with datatypes. intros H3; assert (H4: incl l1 (mkList (s G) l1)). apply H1; auto with datatypes. intros b H4; apply H2; auto with datatypes. intros b; simpl; intros [H5 | H5]; subst; auto. intros _ b; simpl; intros [H3 | H3]; subst; auto. apply in_or_app; left. cut (In H.(e) G.(s)). elim (s G); simpl; auto. intros c l2 Hl2 [H3 | H3]; subst; sauto. assert (In b H.(s)); sauto. apply (H2 b); auto with datatypes. rewrite same_e_for_H_and_G; sauto. apply in_or_app; right. apply H1; auto with datatypes. apply incl_tran with (2:= H2); auto with datatypes. unfold mkGH; apply H1; auto with datatypes. Qed. Theorem incl_mkGH: incl mkGH H.(s). assert (H1: forall l, incl l H.(s) -> incl (mkList G.(s) l) H.(s)). intros l; elim l; simpl; auto with datatypes. intros a l1 H1 H2. case (In_dec A_dec a (mkList (s G) l1)); intros H3; auto with datatypes. apply H1; apply incl_tran with (2 := H2); auto with datatypes. apply incl_app. intros b H4. case ListAux.in_map_inv with (1:= H4); auto. intros c (Hc1, Hc2); subst; sauto. apply internal; auto with datatypes. apply H1; apply incl_tran with (2 := H2); auto with datatypes. unfold mkGH; apply H1; auto with datatypes. Qed. Theorem ulist_mkGH: ulist mkGH. assert (H1: forall l, incl l H.(s) -> ulist (mkList G.(s) l)). intros l; elim l; simpl; auto with datatypes. intros a l1 H1 H2. case (In_dec A_dec a (mkList (s G) l1)); intros H3; auto with datatypes. apply H1; apply incl_tran with (2 := H2); auto with datatypes. apply ulist_app; auto. apply ulist_map; sauto. intros x y H4 H5 H6; apply g_cancel_l with (g:= H) (a := a); sauto. apply H2; auto with datatypes. apply H1; apply incl_tran with (2 := H2); auto with datatypes. intros b H4 H5. case ListAux.in_map_inv with (1:= H4); auto. intros c (Hc, Hc1); subst. assert (H6: forall l a b, In b G.(s) -> incl l H.(s) -> In a (mkList G.(s) l) -> In (op a b) (mkList G.(s) l)). intros ll u v; elim ll; simpl; auto with datatypes. intros w ll1 T0 T1 T2. case (In_dec A_dec w (mkList (s G) ll1)); intros T3 T4; auto with datatypes. apply T0; auto; apply incl_tran with (2:= T2); auto with datatypes. case in_app_or with (1 := T4); intros T5; auto with datatypes. apply in_or_app; left. case ListAux.in_map_inv with (1:= T5); auto. intros z (Hz1, Hz2); subst. replace (op (op w z) v) with (op w (op z v)); sauto. apply in_map; sauto. apply assoc with H; auto with datatypes. apply in_or_app; right; auto with datatypes. apply T0; try apply incl_tran with (2 := T2); auto with datatypes. case H3; replace a with (op (op a c) (G.(i) c)); auto with datatypes. apply H6; sauto. apply incl_tran with (2 := H2); auto with datatypes. apply trans_equal with (op a (op c (G.(i) c))); sauto. apply sym_equal; apply assoc with H; auto with datatypes. replace (op c (G.(i) c)) with (G.(e)); sauto. rewrite <- same_e_for_H_and_G. assert (In a H.(s)); sauto; apply (H2 a); auto with datatypes. unfold mkGH; apply H1; auto with datatypes. Qed. (************************************** Lagrange theorem **************************************) Theorem lagrange: (g_order G | (g_order H)). unfold g_order. rewrite Permutation.permutation_length with (l := H.(s)) (m:= mkGH). case mkGH_length; intros x H1; exists (Z_of_nat x). rewrite H1; rewrite Zmult_comm; apply inj_mult. apply ulist_incl2_permutation; auto. apply ulist_mkGH. apply mkGH_incl. apply incl_mkGH. Qed. End Lagrange.