(*************************************************************) (* This file is distributed under the terms of the *) (* GNU Lesser General Public License Version 2.1 *) (*************************************************************) (* Benjamin.Gregoire@inria.fr Laurent.Thery@inria.fr *) (*************************************************************) (************************************************************************ Definition of the Euler Totient function *************************************************************************) Require Import Coq.ZArith.ZArith. Require Export Coq.ZArith.Znumtheory. Require Import Coqprime.Tactic. Require Export Coqprime.ZSum. Open Scope Z_scope. Definition phi n := Zsum 1 (n - 1) (fun x => if rel_prime_dec x n then 1 else 0). Theorem phi_def_with_0: forall n, 1< n -> phi n = Zsum 0 (n - 1) (fun x => if rel_prime_dec x n then 1 else 0). intros n H; rewrite Zsum_S_left; auto with zarith. case (rel_prime_dec 0 n); intros H2. contradict H2; apply not_rel_prime_0; auto. rewrite Zplus_0_l; auto. Qed. Theorem phi_pos: forall n, 1 < n -> 0 < phi n. intros n H; unfold phi. case (Zle_lt_or_eq 2 n); auto with zarith; intros H1; subst. rewrite Zsum_S_left; simpl; auto with zarith. case (rel_prime_dec 1 n); intros H2. apply Zlt_le_trans with (1 + 0); auto with zarith. apply Zplus_le_compat_l. pattern 0 at 1; replace 0 with ((1 + (n - 1) - 2) * 0); auto with zarith. rewrite <- Zsum_c; auto with zarith. apply Zsum_le; auto with zarith. intros x H3; case (rel_prime_dec x n); auto with zarith. case H2; apply rel_prime_1; auto with zarith. rewrite Zsum_nn. case (rel_prime_dec (2 - 1) 2); auto with zarith. intros H1; contradict H1; apply rel_prime_1; auto with zarith. Qed. Theorem phi_le_n_minus_1: forall n, 1 < n -> phi n <= n - 1. intros n H; replace (n-1) with ((1 + (n - 1) - 1) * 1); auto with zarith. rewrite <- Zsum_c; auto with zarith. unfold phi; apply Zsum_le; auto with zarith. intros x H1; case (rel_prime_dec x n); auto with zarith. Qed. Theorem prime_phi_n_minus_1: forall n, prime n -> phi n = n - 1. intros n H; replace (n-1) with ((1 + (n - 1) - 1) * 1); auto with zarith. assert (Hu: 1 <= n - 1). assert (2 <= n); auto with zarith. apply prime_ge_2; auto. rewrite <- Zsum_c; auto with zarith; unfold phi; apply Zsum_ext; auto. intros x (H2, H3); case H; clear H; intros H H1. generalize (H1 x); case (rel_prime_dec x n); auto with zarith. intros H6 H7; contradict H6; apply H7; split; auto with zarith. Qed. Theorem phi_n_minus_1_prime: forall n, 1 < n -> phi n = n - 1 -> prime n. intros n H H1; case (prime_dec n); auto; intros H2. assert (H3: phi n < n - 1); auto with zarith. replace (n-1) with ((1 + (n - 1) - 1) * 1); auto with zarith. assert (Hu: 1 <= n - 1); auto with zarith. rewrite <- Zsum_c; auto with zarith; unfold phi; apply Zsum_lt; auto. intros x _; case (rel_prime_dec x n); auto with zarith. case not_prime_divide with n; auto. intros x (H3, H4); exists x; repeat split; auto with zarith. case (rel_prime_dec x n); auto with zarith. intros H5; absurd (x = 1 \/ x = -1); auto with zarith. case (Zis_gcd_unique x n x 1); auto. apply Zis_gcd_intro; auto; exists 1; auto with zarith. contradict H3; rewrite H1; auto with zarith. Qed. Theorem phi_divide_prime: forall n, 1 < n -> (n - 1 | phi n) -> prime n. intros n H1 H2; apply phi_n_minus_1_prime; auto. apply Zle_antisym. apply phi_le_n_minus_1; auto. apply Zdivide_le; auto; auto with zarith. apply phi_pos; auto. Qed.