From fd96d93e077681b57e8d4235d8281941d67304b2 Mon Sep 17 00:00:00 2001 From: jadep Date: Fri, 2 Jun 2017 14:46:32 -0400 Subject: first successful stage of karatsuba synthesis --- src/Arithmetic/Karatsuba.v | 169 +++++++++++++++++++++++++++++++++++---------- 1 file changed, 133 insertions(+), 36 deletions(-) (limited to 'src') diff --git a/src/Arithmetic/Karatsuba.v b/src/Arithmetic/Karatsuba.v index 0f20bb238..7b2004a2d 100644 --- a/src/Arithmetic/Karatsuba.v +++ b/src/Arithmetic/Karatsuba.v @@ -1,49 +1,146 @@ Require Import Coq.ZArith.ZArith. Require Import Crypto.Algebra.Nsatz. -Require Import Crypto.Util.ZUtil. +Require Import Crypto.Util.ZUtil Crypto.Util.LetIn Crypto.Util.CPSUtil. Local Open Scope Z_scope. Section Karatsuba. - Context {T : Type} (eval : T -> Z) - (sub : T -> T -> T) - (eval_sub : forall x y, eval (sub x y) = eval x - eval y) - (mul : T -> T -> T) - (eval_mul : forall x y, eval (mul x y) = eval x * eval y) - (add : T -> T -> T) - (eval_add : forall x y, eval (add x y) = eval x + eval y) - (scmul : Z -> T -> T) - (eval_scmul : forall c x, eval (scmul c x) = c * eval x) - (split : Z -> T -> T * T) - (eval_split : forall s x, s <> 0 -> eval (fst (split s x)) + s * (eval (snd (split s x))) = eval x) - . - - Definition karatsuba_mul s (x y : T) : T := - let xab := split s x in - let yab := split s y in - let xy0 := mul (fst xab) (fst yab) in - let xy2 := mul (snd xab) (snd yab) in - let xy1 := sub (mul (add (fst xab) (snd xab)) (add (fst yab) (snd yab))) (add xy2 xy0) in - add (add (scmul (s^2) xy2) (scmul s xy1)) xy0. + (* T is the "half-length" type, T2 is the "full-length" type *) + Context {T T2 : Type} (eval : T -> Z) (eval2 : T2 -> Z). - Lemma eval_karatsuba_mul s x y (s_nonzero:s <> 0) : - eval (karatsuba_mul s x y) = eval x * eval y. - Proof using Type*. cbv [karatsuba_mul]; repeat rewrite ?eval_sub, ?eval_mul, ?eval_add, ?eval_scmul. - rewrite <-(eval_split s x), <-(eval_split s y) by assumption; ring. Qed. + (* multiplication takes half-length inputs to full-length output *) + Context {mul_cps : T -> T -> forall {R}, (T2->R)->R} + {mul : T -> T -> T2} + {mul_id : forall x y {R} f, @mul_cps x y R f = f (mul x y)} + {eval_mul : forall x y, eval2 (mul x y) = eval x * eval y}. + + (* splitting takes full-length input to half-length outputs *) + Context {split_cps : Z -> T2 -> forall {R}, ((T * T)->R)->R} + {split : Z -> T2 -> T * T} + {split_id : forall s x R f, @split_cps s x R f = f (split s x)} + {eval_split : forall s x, s <> 0 -> eval (fst (split s x)) + s * (eval (snd (split s x))) = eval2 x}. + + (* half-length add *) + Context {add_cps : T -> T -> forall {R}, (T->R)->R} + {add : T -> T -> T} + {add_id : forall x y {R} f, @add_cps x y R f = f (add x y)} + {eval_add : forall x y, eval (add x y) = eval x + eval y}. + + (* full-length operations: sub, add, scmul *) + Context {sub2_cps : T2 -> T2 -> forall {R}, (T2->R)->R} + {sub2 : T2 -> T2 -> T2} + {sub2_id : forall x y {R} f, @sub2_cps x y R f = f (sub2 x y)} + {eval_sub2 : forall x y, eval2 (sub2 x y) = eval2 x - eval2 y} + {add2_cps : T2 -> T2 -> forall {R}, (T2->R)->R} + {add2 : T2 -> T2 -> T2} + {add2_id : forall x y {R} f, @add2_cps x y R f = f (add2 x y)} + {eval_add2 : forall x y, eval2 (add2 x y) = eval2 x + eval2 y} + {scmul2_cps : Z -> T2 -> forall {R}, (T2->R)->R} + {scmul2 : Z -> T2 -> T2} + {scmul2_id : forall z x {R} f, @scmul2_cps z x R f = f (scmul2 z x)} + {eval_scmul2 : forall c x, eval2 (scmul2 c x) = c * eval2 x}. + + Local Ltac rewrite_id := + repeat progress rewrite ?mul_id, ?split_id, ?add_id, ?sub2_id, ?add2_id, ?scmul2_id. + Local Ltac rewrite_eval := + repeat progress rewrite ?eval_mul, ?eval_split, ?eval_add, ?eval_sub2, ?eval_add2, ?eval_scmul2. + (* + If x = x0 + sx1 and y = y0 + sy1, then xy = s^2 * z2 + s * z1 + s * z0, + with: + + z2 = x1y1 + z0 = x0y0 + z1 = (x1+x0)(y1+y0) - (z2 + z0) + + Computing z1 one operation at a time: + sum_z = z0 + z2 + sum_x = x1 + x0 + sum_y = y1 + y0 + mul_sumxy = sum_x * sum_y + z1 = mul_sumxy - sum_z + *) + Definition karatsuba_mul_cps s (x y : T2) {R} (f:T2->R) := + split_cps s x _ + (fun x0_x1 => split_cps s y _ + (fun y0_y1 => mul_cps (fst x0_x1) (fst y0_y1) _ + (fun z0 => mul_cps (snd x0_x1) (snd y0_y1) _ + (fun z2 => add2_cps z0 z2 _ + (fun sum_z => add_cps (fst x0_x1) (snd x0_x1) _ + (fun sum_x => add_cps (fst y0_y1) (snd y0_y1) _ + (fun sum_y => mul_cps sum_x sum_y _ + (fun mul_sumxy => sub2_cps mul_sumxy sum_z _ + (fun z1 => scmul2_cps s z1 _ + (fun sz1 => scmul2_cps (s^2) z2 _ + (fun s2z2 => add2_cps s2z2 sz1 _ + (fun add_s2z2_sz1 => add2_cps add_s2z2_sz1 z0 _ f)))))))))))). + + Definition karatsuba_mul s x y := @karatsuba_mul_cps s x y _ id. + Lemma karatsuba_mul_id s x y R f : + @karatsuba_mul_cps s x y R f = f (karatsuba_mul s x y). + Proof. + cbv [karatsuba_mul karatsuba_mul_cps]. rewrite_id. + reflexivity. + Qed. + + Lemma eval_karatsuba_mul s x y (s_nonzero:s <> 0) : + eval2 (karatsuba_mul s x y) = eval2 x * eval2 y. + Proof. + cbv [karatsuba_mul karatsuba_mul_cps]. rewrite_id. + repeat rewrite push_id. rewrite_eval. + rewrite <-(eval_split s x), <-(eval_split s y) by assumption; ring. + Qed. - Definition goldilocks_mul s (xs ys : T) : T := - let a_b := split s xs in - let c_d := split s ys in - let ac := mul (fst a_b) (fst c_d) in - (add (add ac (mul (snd a_b) (snd c_d))) - (scmul s (sub (mul (add (fst a_b) (snd a_b)) (add (fst c_d) (snd c_d))) ac))). + (* + If: + s^2 mod p = (s + 1) mod p + x = x0 + sx1 + y = y0 + sy1 + Then, with z0 and z2 as before and z1 = ((a + b) * (c + d)) - z0, + xy mod p = (z0 + z2 + sz1) mod p + + Computing xy one operation at a time: + sum_z = z0 + z2 + sum_x = x0 + x1 + sum_y = y0 + y1 + mul_sumxy = sum_x * sum_y + z1 = mul_sumxy - z0 + sz1 = s * z1 + xy = sum_z - sz1 + + *) + Definition goldilocks_mul_cps s (xs ys : T2) {R} (f:T2->R) := + split_cps s xs _ + (fun x0_x1 => split_cps s ys _ + (fun y0_y1 => mul_cps (fst x0_x1) (fst y0_y1) _ + (fun z0 => mul_cps (snd x0_x1) (snd y0_y1) _ + (fun z2 => add2_cps z0 z2 _ + (fun sum_z => add_cps (fst x0_x1) (snd x0_x1) _ + (fun sum_x => add_cps (fst y0_y1) (snd y0_y1) _ + (fun sum_y => mul_cps sum_x sum_y _ + (fun mul_sumxy => sub2_cps mul_sumxy z0 _ + (fun z1 => scmul2_cps s z1 _ + (fun sz1 => add2_cps sum_z sz1 _ f)))))))))). - Local Existing Instances Z.equiv_modulo_Reflexive RelationClasses.eq_Reflexive Z.equiv_modulo_Symmetric Z.equiv_modulo_Transitive Z.mul_mod_Proper Z.add_mod_Proper Z.modulo_equiv_modulo_Proper. + Definition goldilocks_mul s xs ys := @goldilocks_mul_cps s xs ys _ id. + Lemma goldilocks_mul_id s xs ys {R} f : + @goldilocks_mul_cps s xs ys R f = f (goldilocks_mul s xs ys). + Proof. + cbv [goldilocks_mul goldilocks_mul_cps]. rewrite_id. + reflexivity. + Qed. + + Local Existing Instances Z.equiv_modulo_Reflexive + RelationClasses.eq_Reflexive Z.equiv_modulo_Symmetric + Z.equiv_modulo_Transitive Z.mul_mod_Proper Z.add_mod_Proper + Z.modulo_equiv_modulo_Proper. Lemma goldilocks_mul_correct (p : Z) (p_nonzero : p <> 0) s (s_nonzero : s <> 0) (s2_modp : (s^2) mod p = (s+1) mod p) xs ys : - (eval (goldilocks_mul s xs ys)) mod p = (eval xs * eval ys) mod p. - Proof using Type*. cbv [goldilocks_mul]; Zmod_to_equiv_modulo. - repeat rewrite ?eval_mul, ?eval_add, ?eval_sub, ?eval_scmul, <-?(eval_split s xs), <-?(eval_split s ys) by assumption; ring_simplify. + (eval2 (goldilocks_mul s xs ys)) mod p = (eval2 xs * eval2 ys) mod p. + Proof. + cbv [goldilocks_mul_cps goldilocks_mul]; Zmod_to_equiv_modulo. + rewrite_id. rewrite push_id. rewrite_eval. + repeat progress rewrite <-?(eval_split s xs), <-?(eval_split s ys) by assumption; ring_simplify. setoid_rewrite s2_modp. - apply f_equal2; nsatz. Qed. + apply f_equal2; nsatz. + Qed. End Karatsuba. -- cgit v1.2.3