From a47b49b11d17add5ca1ea5e650d2f344219b4f7e Mon Sep 17 00:00:00 2001 From: Jason Gross Date: Fri, 5 Feb 2016 15:24:42 -0500 Subject: Update build process to use COQPATH & _CoqProject Removed all of the files not built by default; they can be resurrected from git history. _CoqProject is the standard way to list the files in a project and to give information to coq_makefile. COQPATH is the standard way to make use of not-yet-installed libraries that are not part of your project (i.e., you don't want to remove them when you `make clean`, etc.). --- coqprime/num/Mod_op.v | 1200 ------------------------------------------------- 1 file changed, 1200 deletions(-) delete mode 100644 coqprime/num/Mod_op.v (limited to 'coqprime/num/Mod_op.v') diff --git a/coqprime/num/Mod_op.v b/coqprime/num/Mod_op.v deleted file mode 100644 index a8f25bd2d..000000000 --- a/coqprime/num/Mod_op.v +++ /dev/null @@ -1,1200 +0,0 @@ - -(*************************************************************) -(* This file is distributed under the terms of the *) -(* GNU Lesser General Public License Version 2.1 *) -(*************************************************************) -(* Benjamin.Gregoire@inria.fr Laurent.Thery@inria.fr *) -(*************************************************************) - -Set Implicit Arguments. - -Require Import DoubleBase DoubleSub DoubleMul DoubleSqrt DoubleLift DoubleDivn1 DoubleDiv. -Require Import CyclicAxioms DoubleCyclic BigN Cyclic31. -Require Import ZArith ZCAux. -Import CyclicAxioms DoubleType DoubleBase. - -Theorem Zpos_pos: forall x, 0 < Zpos x. -red; simpl; auto. -Qed. -Hint Resolve Zpos_pos: zarith. - -Section Mod_op. - - Variable w : Type. - - Record mod_op : Type := mk_mod_op { - succ_mod : w -> w; - add_mod : w -> w -> w; - pred_mod : w -> w; - sub_mod : w -> w -> w; - mul_mod : w -> w -> w; - square_mod : w -> w; - power_mod : w -> positive -> w - }. - - Variable w_op : ZnZ.Ops w. - - Let w_digits := w_op.(ZnZ.digits). - Let w_zdigits := w_op.(ZnZ.zdigits). - Let w_to_Z := (@ZnZ.to_Z _ w_op). - Let w_of_pos := (@ZnZ.of_pos _ w_op). - Let w_head0 := (@ZnZ.head0 _ w_op). - Let w0 := (@ZnZ.zero _ w_op). - Let w1 := (@ZnZ.one _ w_op). - Let wBm1 := (@ZnZ.minus_one _ w_op). - - Let wWW := (@ZnZ.WW _ w_op). - Let wW0 := (@ZnZ.WO _ w_op). - Let w0W := (@ZnZ.OW _ w_op). - - Let w_compare := (@ZnZ.compare _ w_op). - Let w_opp_c := (@ZnZ.opp_c _ w_op). - Let w_opp := (@ZnZ.opp _ w_op). - Let w_opp_carry := (@ZnZ.opp_carry _ w_op). - - Let w_succ := (@ZnZ.succ _ w_op). - Let w_succ_c := (@ZnZ.succ_c _ w_op). - Let w_add_c := (@ZnZ.add_c _ w_op). - Let w_add_carry_c := (@ZnZ.add_carry_c _ w_op). - Let w_add := (@ZnZ.add _ w_op). - - - Let w_pred_c := (@ZnZ.pred_c _ w_op). - Let w_sub_c := (@ZnZ.sub_c _ w_op). - Let w_sub_carry := (@ZnZ.sub_carry _ w_op). - Let w_sub_carry_c := (@ZnZ.sub_carry_c _ w_op). - Let w_sub := (@ZnZ.sub _ w_op). - Let w_pred := (@ZnZ.pred _ w_op). - - Let w_mul_c := (@ZnZ.mul_c _ w_op). - Let w_mul := (@ZnZ.mul _ w_op). - Let w_square_c := (@ZnZ.square_c _ w_op). - - Let w_div21 := (@ZnZ.div21 _ w_op). - Let w_add_mul_div := (@ZnZ.add_mul_div _ w_op). - - Variable b : w. - (* b should be > 1 *) - Let n := w_head0 b. - - Let b2n := w_add_mul_div n b w0. - - Let bm1 := w_sub b w1. - - Let mb := w_opp b. - - Let wwb := WW w0 b. - - Let low x := match x with WW _ x => x | W0 => w0 end. - - Let w_add2 x y := match w_add_c x y with - C0 n => WW w0 n - |C1 n => WW w1 n - end. - Let ww_zdigits := w_add2 w_zdigits w_zdigits. - - Let ww_compare := - Eval lazy beta delta [ww_compare] in ww_compare w0 w_compare. - - Let ww_sub := - Eval lazy beta delta [ww_sub] in - ww_sub w0 wWW w_opp_c w_opp_carry w_sub_c w_opp w_sub w_sub_carry. - - Let ww_add_mul_div := - Eval lazy beta delta [ww_add_mul_div] in - ww_add_mul_div w0 wWW wW0 w0W - ww_compare w_add_mul_div - ww_sub w_zdigits low (w0W n). - - Let ww_lsl_n := - Eval lazy beta delta [ww_add_mul_div] in - fun ww => ww_add_mul_div ww W0. - - Let w_lsr_n w := - w_add_mul_div (w_sub w_zdigits n) w0 w. - - Open Scope Z_scope. - Notation "[| x |]" := - (@ZnZ.to_Z _ w_op x) (at level 0, x at level 99). - -Notation "[[ x ]]" := - (@ww_to_Z _ w_digits w_to_Z x) (at level 0, x at level 99). - - Section Mod_spec. - - Variable m_op : mod_op. - - Record mod_spec : Prop := mk_mod_spec { - succ_mod_spec : - forall w t, [|w|]= t mod [|b|] -> - [|succ_mod m_op w|] = ([|w|] + 1) mod [|b|]; - add_mod_spec : - forall w1 w2 t1 t2, [|w1|]= t1 mod [|b|] -> [|w2|]= t2 mod [|b|] -> - [|add_mod m_op w1 w2|] = ([|w1|] + [|w2|]) mod [|b|]; - pred_mod_spec : - forall w t, [|w|]= t mod [|b|] -> - [|pred_mod m_op w|] = ([|w|] - 1) mod [|b|]; - sub_mod_spec : - forall w1 w2 t1 t2, [|w1|]= t1 mod [|b|] -> [|w2|]= t2 mod [|b|] -> - [|sub_mod m_op w1 w2|] = ([|w1|] - [|w2|]) mod [|b|]; - mul_mod_spec : - forall w1 w2 t1 t2, [|w1|]= t1 mod [|b|] -> [|w2|]= t2 mod [|b|] -> - [|mul_mod m_op w1 w2|] = ([|w1|] * [|w2|]) mod [|b|]; - square_mod_spec : - forall w t, [|w|]= t mod [|b|] -> - [|square_mod m_op w|] = ([|w|] * [|w|]) mod [|b|]; - power_mod_spec : - forall w t p, [|w|]= t mod [|b|] -> - [|power_mod m_op w p|] = (Zpower_pos [|w|] p) mod [|b|] -(* - shift_spec : - forall w p, wf w -> - [|shift m_op w p|] = ([|w|] / (Zpower_pos 2 p)) mod [|b|]; - trunc_spec : - forall w p, wf w -> - [|power_mod m_op w p|] = ([|w1|] mod (Zpower_pos 2 p)) mod [|b|] -*) - }. - - End Mod_spec. - - Hypothesis b_pos: 1 < [|b|]. - Variable op_spec: ZnZ.Specs w_op. - - - Lemma Zpower_n: 0 < 2 ^ [|n|]. - apply Zpower_gt_0; auto with zarith. - case (ZnZ.spec_to_Z n); auto with zarith. - Qed. - - Hint Resolve Zpower_n Zmult_lt_0_compat Zpower_gt_0. - - Variable m_op : mod_op. - - Hint Rewrite - ZnZ.spec_0 - ZnZ.spec_1 - ZnZ.spec_m1 - ZnZ.spec_WW - ZnZ.spec_opp_c - ZnZ.spec_opp - ZnZ.spec_opp_carry - ZnZ.spec_succ_c - ZnZ.spec_add_c - ZnZ.spec_add_carry_c - ZnZ.spec_add - ZnZ.spec_pred_c - ZnZ.spec_sub_c - ZnZ.spec_sub_carry_c - ZnZ.spec_sub - ZnZ.spec_mul_c - ZnZ.spec_mul - : w_rewrite. - - Let _succ_mod x := - let res :=w_succ x in - match w_compare res b with - | Lt => res - | _ => w0 - end. - - Let split x := - match x with - | W0 => (w0,w0) - | WW h l => (h,l) - end. - - Let _w0_is_0: [|w0|] = 0. - unfold ZnZ.to_Z; rewrite <- ZnZ.spec_0; auto. - Qed. - - Let _w1_is_1: [|w1|] = 1. - unfold ZnZ.to_Z; rewrite <-ZnZ.spec_1; simpl; auto. - Qed. - - Theorem Zmod_plus_one: forall a1 b1, 0 < b1 -> (a1 + b1) mod b1 = a1 mod b1. - intros a1 b1 H; rewrite Zplus_mod; auto with zarith. - rewrite Z_mod_same; try rewrite Zplus_0_r; auto with zarith. - apply Zmod_mod; auto. - Qed. - - Theorem Zmod_minus_one: forall a1 b1, 0 < b1 -> (a1 - b1) mod b1 = a1 mod b1. - intros a1 b1 H; rewrite Zminus_mod; auto with zarith. - rewrite Z_mod_same; try rewrite Zminus_0_r; auto with zarith. - apply Zmod_mod; auto. - Qed. - - Lemma without_c_b: forall w2, [|w2|] < [|b|] -> - [|w_succ w2|] = [|w2|] + 1. - intros w2 H. - unfold w_succ;rewrite ZnZ.spec_succ. - rewrite Zmod_small;auto. - assert (HH := ZnZ.spec_to_Z w2). - assert (HH' := ZnZ.spec_to_Z b);auto with zarith. - Qed. - - Lemma _succ_mod_spec: forall w t, [|w|]= t mod [|b|] -> - [|_succ_mod w|] = ([|w|] + 1) mod [|b|]. - intros w2 t H; unfold _succ_mod, w_compare; simpl. - assert (F: [|w2|] < [|b|]). - case (Z_mod_lt t [|b|]); auto with zarith. - rewrite ZnZ.spec_compare; case Zcompare_spec; intros H1; - match goal with H: context[w_succ _] |- _ => - generalize H; clear H; rewrite (without_c_b _ F); intros H1; - auto with zarith - end. - rewrite H1, Z_mod_same, _w0_is_0; auto with zarith. - rewrite Zmod_small; auto with zarith. - case (ZnZ.spec_to_Z w2); auto with zarith. - Qed. - - Let _add_mod x y := - match w_add_c x y with - | C0 z => - match w_compare z b with - | Lt => z - | Eq => w0 - | Gt => w_sub z b - end - | C1 z => w_add mb z - end. - - Lemma _add_mod_correct: forall w1 w2, [|w1|] + [|w2|] < 2 * [|b|] -> - [|_add_mod w1 w2|] = ([|w1|] + [|w2|]) mod [|b|]. - intros w2 w3; unfold _add_mod, w_compare, w_add_c; intros H. - match goal with |- context[ZnZ.add_c ?x ?y] => - generalize (ZnZ.spec_add_c x y); unfold interp_carry; - case (ZnZ.add_c x y); autorewrite with w_rewrite - end; auto with zarith. - intros w4 H2. - rewrite ZnZ.spec_compare; case Zcompare_spec; intros H1; - match goal with H: context[b] |- _ => - generalize H; clear H; intros H1; rewrite <-H2; - auto with zarith - end. - rewrite H1, Z_mod_same; auto with zarith. - rewrite Zmod_small; auto with zarith. - case (ZnZ.spec_to_Z w4); auto with zarith. - assert (F1: 0 < [|w4|] - [|b|]); auto with zarith. - assert (F2: [|w4|] < [|b|] + [|b|]); auto with zarith. - autorewrite with w_rewrite; auto. - rewrite (fun x y => Zmod_small (x - y)); auto with zarith. - rewrite <- (Zmod_minus_one [|w4|]); auto with zarith. - apply sym_equal; apply Zmod_small; auto with zarith. - split; auto with zarith. - apply Zlt_trans with [|b|]; auto with zarith. - case (ZnZ.spec_to_Z b); unfold base; auto with zarith. - rewrite Zmult_1_l; intros w4 H2; rewrite <- H2. - unfold mb, w_add; rewrite ZnZ.spec_add; auto with zarith. - assert (F1: [|w4|] < [|b|]). - assert (F2: base (ZnZ.digits w_op) + [|w4|] < base (ZnZ.digits w_op) + [|b|]); - auto with zarith. - rewrite H2. - apply Zlt_trans with ([|b|] +[|b|]); auto with zarith. - apply Zplus_lt_compat_r; auto with zarith. - case (ZnZ.spec_to_Z b); auto with zarith. - assert (F2: [|b|] < base (ZnZ.digits w_op) + [|w4|]); auto with zarith. - apply Zlt_le_trans with (base (ZnZ.digits w_op)); auto with zarith. - case (ZnZ.spec_to_Z b); auto with zarith. - case (ZnZ.spec_to_Z w4); auto with zarith. - assert (F3: base (ZnZ.digits w_op) + [|w4|] < [|b|] + [|b|]); auto with zarith. - rewrite <- (fun x => Zmod_minus_one (base x + [|w4|])); auto with zarith. - rewrite (fun x y => Zmod_small (x - y)); auto with zarith. - unfold w_opp;rewrite (ZnZ.spec_opp b). - rewrite <- (fun x => Zmod_plus_one (-x)); auto with zarith. - rewrite (Zmod_small (- [|b|] + base (ZnZ.digits w_op)));auto with zarith. - 2 : assert (HHH := ZnZ.spec_to_Z b);auto with zarith. - repeat rewrite Zmod_small; auto with zarith. - Qed. - - Lemma _add_mod_spec: forall w1 w2 t1 t2, [|w1|] = t1 mod [|b|] -> [|w2|] = t2 mod [|b|] -> - [|_add_mod w1 w2|] = ([|w1|] + [|w2|]) mod [|b|]. - intros w2 w3 t1 t2 H H1. - apply _add_mod_correct; auto with zarith. - assert (F: [|w2|] < [|b|]). - case (Z_mod_lt t1 [|b|]); auto with zarith. - assert (F': [|w3|] < [|b|]). - case (Z_mod_lt t2 [|b|]); auto with zarith. - assert (tmp: forall x, 2 * x = x + x); auto with zarith. - Qed. - - Let _pred_mod x := - match w_compare w0 x with - | Eq => bm1 - | _ => w_pred x - end. - - Lemma _pred_mod_spec: forall w t, [|w|] = t mod [|b|] -> - [|_pred_mod w|] = ([|w|] - 1) mod [|b|]. - intros w2 t H; unfold _pred_mod, w_compare, bm1; simpl. - assert (F: [|w2|] < [|b|]). - case (Z_mod_lt t [|b|]); auto with zarith. - rewrite ZnZ.spec_compare; case Zcompare_spec; intros H1; - match goal with H: context[w2] |- _ => - generalize H; clear H; intros H1; autorewrite with w_rewrite; - auto with zarith - end; try rewrite _w0_is_0; try rewrite _w1_is_1; auto with zarith. - rewrite <- H1, _w0_is_0; simpl. - rewrite <- (Zmod_plus_one (-1)); auto with zarith. - repeat rewrite Zmod_small; auto with zarith. - case (ZnZ.spec_to_Z b); auto with zarith. - unfold w_pred;rewrite ZnZ.spec_pred; auto. - assert (HHH := ZnZ.spec_to_Z b);repeat rewrite Zmod_small;auto with - zarith. - intros;assert (HHH := ZnZ.spec_to_Z w2);auto with zarith. - Qed. - - Let _sub_mod x y := - match w_sub_c x y with - | C0 z => z - | C1 z => w_add z b - end. - - Lemma _sub_mod_spec: forall w1 w2 t1 t2, [|w1|] = t1 mod [|b|] -> [|w2|] = t2 mod [|b|] -> - [|_sub_mod w1 w2|] = ([|w1|] - [|w2|]) mod [|b|]. - intros w2 w3 t1 t2; unfold _sub_mod, w_compare, w_sub_c; intros H H1. - assert (F: [|w2|] < [|b|]). - case (Z_mod_lt t1 [|b|]); auto with zarith. - assert (F': [|w3|] < [|b|]). - case (Z_mod_lt t2 [|b|]); auto with zarith. - match goal with |- context[ZnZ.sub_c ?x ?y] => - generalize (ZnZ.spec_sub_c x y); unfold interp_carry; - case (ZnZ.sub_c x y); autorewrite with w_rewrite - end; auto with zarith. - intros w4 H2. - rewrite Zmod_small; auto with zarith. - split; auto with zarith. - rewrite <- H2; case (ZnZ.spec_to_Z w4); auto with zarith. - apply Zle_lt_trans with [|w2|]; auto with zarith. - case (ZnZ.spec_to_Z w3); auto with zarith. - intros w4 H2; rewrite <- H2. - unfold w_add; rewrite ZnZ.spec_add; auto with zarith. - case (ZnZ.spec_to_Z w4); intros F1 F2. - assert (F3: 0 <= - 1 * base (ZnZ.digits w_op) + [|w4|] + [|b|]); auto with zarith. - rewrite H2. - case (ZnZ.spec_to_Z w3); case (ZnZ.spec_to_Z w2); auto with zarith. - rewrite <- (fun x => Zmod_minus_one ([|w4|] + x)); auto with zarith. - rewrite <- (fun x y => Zmod_plus_one (-y + x)); auto with zarith. - repeat rewrite Zmod_small; auto with zarith. - case (ZnZ.spec_to_Z b); auto with zarith. - Qed. - - Let _mul_mod x y := - let xy := w_mul_c x y in - match ww_compare xy wwb with - | Lt => snd (split xy) - | Eq => w0 - | Gt => - let xy2n := ww_lsl_n xy in - let (h,l) := split xy2n in - let (q,r) := w_div21 h l b2n in - w_lsr_n r - end. - - Theorem high_zero:forall x, [[x]] < base w_digits -> [|fst (split x)|] = 0. - intros x; case x; simpl; auto. - intros xh xl H; case (Zle_lt_or_eq 0 [|xh|]); auto with zarith. - case (ZnZ.spec_to_Z xh); auto with zarith. - intros H1; contradict H; apply Zle_not_lt. - assert (HHHH := wB_pos w_digits). - unfold w_to_Z. - match goal with |- ?X <= ?Y + ?Z => - pattern X at 1; rewrite <- (Zmult_1_l X); auto with zarith; - apply Zle_trans with Y; auto with zarith - end. - case (ZnZ.spec_to_Z xl); auto with zarith. - Qed. - - Theorem n_spec: base (ZnZ.digits w_op) / 2 <= 2 ^ [|n|] * [|b|] - < base (ZnZ.digits w_op). - unfold n, w_head0; apply (ZnZ.spec_head0); auto with zarith. - Qed. - - Theorem b2n_spec: [|b2n|] = 2 ^ [|n|] * [|b|]. - unfold b2n, w_add_mul_div; case n_spec; intros Hp Hp1. - assert (F1: [|n|] < Zpos (ZnZ.digits w_op)). - case (Zle_or_lt (Zpos (ZnZ.digits w_op)) [|n|]); auto with zarith. - intros H1; contradict Hp1; apply Zle_not_lt; unfold base. - apply Zle_trans with (2 ^ [|n|] * 1); auto with zarith. - rewrite Zmult_1_r; apply Zpower_le_monotone; auto with zarith. - rewrite ZnZ.spec_add_mul_div; auto with zarith. - rewrite _w0_is_0; rewrite Zdiv_0_l; auto with zarith. - rewrite Zplus_0_r; rewrite Zmult_comm; apply Zmod_small; auto with zarith. - Qed. - - Theorem ww_lsl_n_spec: forall w, [[w]] < [|b|] * [|b|] -> - [[ww_lsl_n w]] = 2 ^ [|n|] * [[w]]. - intros w2 H; unfold ww_lsl_n. - case n_spec; intros Hp Hp1. - assert (F0: forall x, 2 * x = x + x); auto with zarith. - assert (F1: [|n|] < Zpos (ZnZ.digits w_op)). - case (Zle_or_lt (Zpos (ZnZ.digits w_op)) [|n|]); auto. - intros H1; contradict Hp1; apply Zle_not_lt; unfold base. - apply Zle_trans with (2 ^ [|n|] * 1); auto with zarith. - rewrite Zmult_1_r; apply Zpower_le_monotone; auto with zarith. - assert (F2: [|n|] < Zpos (xO (ZnZ.digits w_op))). - rewrite (Zpos_xO (ZnZ.digits w_op)); rewrite F0; auto with zarith. - pattern [|n|]; rewrite <- Zplus_0_r; auto with zarith. - apply Zplus_lt_compat; auto with zarith. - change - ([[DoubleLift.ww_add_mul_div w0 wWW wW0 w0W - ww_compare w_add_mul_div - ww_sub w_zdigits low (w0W n) w2 W0]] = 2 ^ [|n|] * [[w2]]). - rewrite (DoubleLift.spec_ww_add_mul_div ); auto with zarith. - 2: apply ZnZ.spec_to_Z; auto. - 2: refine (spec_ww_to_Z _ _ _); auto. - 2: apply ZnZ.spec_to_Z; auto. - 2: apply ZnZ.spec_WW; auto. - 2: apply ZnZ.spec_WO; auto. - 2: apply ZnZ.spec_OW; auto. - 2: refine (spec_ww_compare _ _ _ _ _ _ _); auto. - 2: apply ZnZ.spec_to_Z; auto. - 2: apply ZnZ.spec_compare; auto. - 2: apply ZnZ.spec_add_mul_div; auto. - 2: refine (spec_ww_sub _ _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _); auto. - 2: apply ZnZ.spec_to_Z; auto. - 2: apply ZnZ.spec_WW; auto. - 2: apply ZnZ.spec_opp_c; auto. - 2: apply ZnZ.spec_opp; auto. - 2: apply ZnZ.spec_opp_carry; auto. - 2: apply ZnZ.spec_sub_c; auto. - 2: apply ZnZ.spec_sub; auto. - 2: apply ZnZ.spec_sub_carry; auto. - 2: apply ZnZ.spec_zdigits; auto. - replace ([[w0W n]]) with [|n|]. - change [[W0]] with 0. rewrite Zdiv_0_l; auto with zarith. - rewrite Zplus_0_r; rewrite Zmod_small; auto with zarith. - split; auto with zarith. - case spec_ww_to_Z with (w_digits := w_digits) (w_to_Z := w_to_Z) (x:=w2); auto with zarith. - apply ZnZ.spec_to_Z; auto. - apply Zlt_trans with ([|b|] * [|b|] * 2 ^ [|n|]); auto with zarith. - apply Zmult_lt_compat_r; auto with zarith. - rewrite <- Zmult_assoc. - unfold base; unfold base in Hp. - unfold ww_digits,w_digits;rewrite (Zpos_xO (ZnZ.digits w_op)); rewrite F0; auto with zarith. - rewrite Zpower_exp; auto with zarith. - apply Zmult_lt_compat; auto with zarith. - case (ZnZ.spec_to_Z b); auto with zarith. - split; auto with zarith. - rewrite Zmult_comm; auto with zarith. - unfold w_digits;auto with zarith. - generalize (ZnZ.spec_OW n). - unfold ww_to_Z, w_digits; auto. - intros x; case x; simpl. - unfold w_to_Z, w_digits, w0; rewrite ZnZ.spec_0; auto. - intros w3 w4; rewrite Zplus_comm. - rewrite Z_mod_plus; auto with zarith. - rewrite Zmod_small; auto with zarith. - case (ZnZ.spec_to_Z w4); auto with zarith. - unfold base; auto with zarith. - unfold ww_to_Z, w_digits, w_to_Z, w0W; auto. - rewrite ZnZ.spec_OW; auto with zarith. - Qed. - - Theorem w_lsr_n_spec: forall w, [|w|] < 2 ^ [|n|] * [|b|]-> - [|w_lsr_n w|] = [|w|] / 2 ^ [|n|]. - intros w2 H. - case (ZnZ.spec_to_Z w2); intros U1 U2. - unfold w_lsr_n, w_add_mul_div. - rewrite ZnZ.spec_add_mul_div; auto with zarith. - rewrite _w0_is_0; rewrite Zmult_0_l; auto with zarith. - rewrite Zplus_0_l. - autorewrite with w_rewrite; auto. - rewrite (fun x y => Zmod_small (x - y)); auto with zarith. - unfold w_zdigits; rewrite ZnZ.spec_zdigits; auto. - assert (tmp: forall p q, p - (p - q) = q); intros; try ring; - rewrite tmp; clear tmp; auto. - rewrite Zmod_small; auto with zarith. - split; auto with zarith. - apply Zle_lt_trans with (2 := U2); auto with zarith. - apply Zdiv_le_upper_bound; auto with zarith. - apply Zle_trans with ([|w2|] * (2 ^ 0)); auto with zarith. - simpl Zpower; rewrite Zmult_1_r; auto with zarith. - apply Zmult_le_compat_l; auto with zarith. - apply Zpower_le_monotone; auto with zarith. - case (ZnZ.spec_to_Z n); auto with zarith. - unfold n. - assert (HH: 0 < [|b|]); auto with zarith. - split. - case (Zle_or_lt [|w_head0 b|] [|w_zdigits|]); auto with zarith. - unfold w_zdigits; rewrite ZnZ.spec_zdigits; auto; intros H1. - case (ZnZ.spec_head0 b HH); intros _ H2; contradict H2. - apply Zle_not_lt; unfold base. - apply Zle_trans with (2^[|ZnZ.head0 b|] * 1); auto with zarith. - rewrite Zmult_1_r; apply Zpower_le_monotone; auto with zarith. - unfold w_zdigits; rewrite ZnZ.spec_zdigits; auto. - apply Zle_lt_trans with (Zpos (ZnZ.digits w_op)); auto with zarith. - case (ZnZ.spec_to_Z (w_head0 b)); auto with zarith. - unfold base; apply Zpower2_lt_lin; auto with zarith. - autorewrite with w_rewrite; auto. - rewrite Zmod_small; auto with zarith. - unfold w_zdigits; rewrite ZnZ.spec_zdigits; auto with zarith. - case (ZnZ.spec_to_Z n); auto with zarith. - unfold w_zdigits; rewrite ZnZ.spec_zdigits; auto. - split; auto with zarith. - case (Zle_or_lt [|n|] (Zpos (ZnZ.digits w_op))); auto with zarith; intros H1. - case (ZnZ.spec_head0 b); auto with zarith; intros _ H2. - contradict H2; apply Zle_not_lt; auto with zarith. - unfold base; apply Zle_trans with (2 ^ [|ZnZ.head0 b|] * 1); - auto with zarith. - rewrite Zmult_1_r; unfold base; apply Zpower_le_monotone; auto with zarith. - apply Zle_lt_trans with (Zpos (ZnZ.digits w_op)); auto with zarith. - case (ZnZ.spec_to_Z n); auto with zarith. - unfold base; apply Zpower2_lt_lin; auto with zarith. - Qed. - - Lemma split_correct: forall x, let (xh, xl) := split x in [[WW xh xl]] = [[x]]. - intros x; case x; simpl; unfold w0, w_to_Z;try rewrite ZnZ.spec_0; auto with zarith. - Qed. - - Lemma _mul_mod_spec: forall w1 w2 t1 t2, [|w1|] = t1 mod [|b|] -> [|w2|] = t2 mod [|b|] -> - [|_mul_mod w1 w2|] = ([|w1|] * [|w2|]) mod [|b|]. - intros w2 w3 t1 t2 H H1; unfold _mul_mod, wwb. - assert (F: [|w2|] < [|b|]). - case (Z_mod_lt t1 [|b|]); auto with zarith. - assert (F': [|w3|] < [|b|]). - case (Z_mod_lt t2 [|b|]); auto with zarith. - match goal with |- context[ww_compare ?x ?y] => - change (ww_compare x y) with (DoubleBase.ww_compare w0 w_compare x y) - end. - rewrite (@spec_ww_compare w w0 w_digits w_to_Z w_compare - ZnZ.spec_0 ZnZ.spec_to_Z ZnZ.spec_compare - (w_mul_c w2 w3) (WW w0 b)); case Zcompare_spec; intros H2; - match goal with H: context[w_mul_c] |- _ => - generalize H; clear H - end; try rewrite _w0_is_0; try rewrite !_w1_is_1; auto with zarith. - unfold w_mul_c, ww_to_Z, w_to_Z, w_digits; rewrite ZnZ.spec_mul_c; auto with zarith. - simpl; rewrite _w0_is_0, Zmult_0_l, Zplus_0_l. - intros H2; rewrite H2; simpl. - rewrite Z_mod_same; auto with zarith. - generalize (high_zero (w_mul_c w2 w3)). - unfold w_mul_c; generalize (ZnZ.spec_mul_c w2 w3); - case (ZnZ.mul_c w2 w3); simpl; auto with zarith. - intros H3 _ _; rewrite <- H3; autorewrite with w_rewrite; auto. -(* rewrite Zmod_small; auto with zarith. *) - intros w4 w5. - change (w_to_Z w0) with [|w0|]; rewrite _w0_is_0. - change (w_to_Z w4) with [|w4|]. - change (w_to_Z w5) with [|w5|]. - simpl. - intros H2 H3 H4. - assert (E1: [|w4|] = 0). - apply H3; auto with zarith. - apply Zlt_trans with (1 := H4). - case (ZnZ.spec_to_Z b); auto with zarith. - generalize H4 H2; rewrite E1; rewrite Zmult_0_l; rewrite Zplus_0_l; - clear H4 H2; intros H4 H2. - rewrite <- H2; rewrite Zmod_small; auto with zarith. - case (ZnZ.spec_to_Z w5); auto with zarith. - intros H2. - match goal with |- context[split ?x] => - generalize (split_correct x); - case (split x); auto with zarith - end. - assert (F1: [[w_mul_c w2 w3]] < [|b|] * [|b|]). - unfold w_to_Z, w_mul_c, ww_to_Z,w_digits; - rewrite ZnZ.spec_mul_c; auto with zarith. - apply Zmult_lt_compat; auto with zarith. - case (ZnZ.spec_to_Z w2); auto with zarith. - case (ZnZ.spec_to_Z w3); auto with zarith. - intros w4 w5; rewrite ww_lsl_n_spec; auto with zarith. - intros H3. - unfold w_div21; match goal with |- context[ZnZ.div21 ?y ?z ?t] => - generalize (ZnZ.spec_div21 y z t); - case (ZnZ.div21 y z t) - end. - rewrite b2n_spec; case (n_spec); auto. - intros H4 H5 w6 w7 H6. - case H6; auto with zarith. - case (Zle_or_lt (2 ^ [|n|] * [|b|]) [|w4|]); auto; intros H7. - match type of H3 with ?X = ?Y => - absurd (Y < X) - end. - apply Zle_not_lt; rewrite H3; auto with zarith. - simpl ww_to_Z. - match goal with |- ?X < ?Y + _ => - apply Zlt_le_trans with Y; auto with zarith - end. - apply Zlt_trans with (2 ^ [|n|] * ([|b|] * [|b|])); - auto with zarith. - apply Zmult_lt_compat_l; auto with zarith. - rewrite Zmult_assoc. - apply Zmult_lt_compat2; auto with zarith. - case (ZnZ.spec_to_Z b); auto with zarith. - case (ZnZ.spec_to_Z w5); unfold w_to_Z;auto with zarith. - clear H6; intros H7 H8. - rewrite w_lsr_n_spec; auto with zarith. - rewrite <- (Z_div_mult ([|w2|] * [|w3|]) (2 ^ [|n|])); - auto with zarith; rewrite Zmult_comm. - rewrite <- ZnZ.spec_mul_c; auto with zarith. - unfold w_mul_c in H3; unfold ww_to_Z in H3;simpl H3. - unfold w_digits,w_to_Z in H3. rewrite <- H3; simpl. - rewrite H7; rewrite (fun x => Zmult_comm (2 ^ x)); - rewrite Zmult_assoc; rewrite BigNumPrelude.Z_div_plus_l; auto with zarith. - rewrite Zplus_mod; auto with zarith. - rewrite Z_mod_mult; auto with zarith. - rewrite Zplus_0_l; auto with zarith. - rewrite Zmod_mod; auto with zarith. - rewrite Zmod_small; auto with zarith. - split; auto with zarith. - apply Zdiv_lt_upper_bound; auto with zarith. - rewrite Zmult_comm; auto with zarith. - Qed. - - Let _square_mod x := - let x2 := w_square_c x in - match ww_compare x2 wwb with - | Lt => snd (split x2) - | Eq => w0 - | Gt => - let x2_2n := ww_lsl_n x2 in - let (h,l) := split x2_2n in - let (q,r) := w_div21 h l b2n in - w_lsr_n r - end. - - Lemma _square_mod_spec: forall w t, [|w|] = t mod [|b|] -> - [|_square_mod w|] = ([|w|] * [|w|]) mod [|b|]. - intros w2 t2 H; unfold _square_mod, wwb. - assert (F: [|w2|] < [|b|]). - case (Z_mod_lt t2 [|b|]); auto with zarith. - match goal with |- context[ww_compare ?x ?y] => - change (ww_compare x y) with (DoubleBase.ww_compare w0 w_compare x y) - end. - rewrite (@spec_ww_compare w w0 w_digits w_to_Z w_compare - ZnZ.spec_0 ZnZ.spec_to_Z ZnZ.spec_compare); case Zcompare_spec; - intros H2; - match goal with H: context[w_square_c] |- _ => - generalize H; clear H - end; autorewrite with w_rewrite; try rewrite _w0_is_0; try rewrite !_w1_is_1; auto with zarith. - unfold w_square_c, ww_to_Z, w_to_Z, w_digits; rewrite ZnZ.spec_square_c; auto with zarith. - intros H2;rewrite H2; simpl. - rewrite _w0_is_0; simpl. - rewrite Z_mod_same; auto with zarith. - generalize (high_zero (w_square_c w2)). - unfold w_square_c; generalize (ZnZ.spec_square_c w2); - case (ZnZ.square_c w2); simpl; auto with zarith. - intros H3 _ _; rewrite <- H3; autorewrite with w_rewrite; auto. - intros w4 w5. - change (w_to_Z w0) with [|w0|]; rewrite _w0_is_0; simpl. - change (w_to_Z w4) with [|w4|]. - change (w_to_Z w5) with [|w5|]. - intros H2 H3 H4. - assert (E1: [|w4|] = 0). - apply H3; auto with zarith. - apply Zlt_trans with (1 := H4). - case (ZnZ.spec_to_Z b); auto with zarith. - generalize H4 H2; rewrite E1; rewrite Zmult_0_l; rewrite Zplus_0_l; - clear H4 H2; intros H4 H2. - rewrite <- H2; rewrite Zmod_small; auto with zarith. - case (ZnZ.spec_to_Z w5); auto with zarith. - intros H2. - match goal with |- context[split ?x] => - generalize (split_correct x); - case (split x); auto with zarith - end. - assert (F1: [[w_square_c w2]] < [|b|] * [|b|]). - unfold w_square_c, ww_to_Z, w_digits, w_to_Z. - rewrite ZnZ.spec_square_c; auto with zarith. - apply Zmult_lt_compat; auto with zarith. - case (ZnZ.spec_to_Z w2); auto with zarith. - case (ZnZ.spec_to_Z w2); auto with zarith. - intros w4 w5; rewrite ww_lsl_n_spec; auto with zarith. - intros H3. - unfold w_div21; match goal with |- context[ZnZ.div21 ?y ?z ?t] => - generalize (ZnZ.spec_div21 y z t); - case (ZnZ.div21 y z t) - end. - rewrite b2n_spec; case (n_spec); auto. - intros H4 H5 w6 w7 H6. - case H6; auto with zarith. - case (Zle_or_lt (2 ^ [|n|] * [|b|]) [|w4|]); auto; intros H7. - match type of H3 with ?X = ?Y => - absurd (Y < X) - end. - apply Zle_not_lt; rewrite H3; auto with zarith. - simpl ww_to_Z. - match goal with |- ?X < ?Y + _ => - apply Zlt_le_trans with Y; auto with zarith - end. - apply Zlt_trans with (2 ^ [|n|] * ([|b|] * [|b|])); - auto with zarith. - apply Zmult_lt_compat_l; auto with zarith. - rewrite Zmult_assoc. - apply Zmult_lt_compat2; auto with zarith. - case (ZnZ.spec_to_Z b); auto with zarith. - unfold w_to_Z,w_digits;case (ZnZ.spec_to_Z w5); auto with zarith. - clear H6; intros H7 H8. - rewrite w_lsr_n_spec; auto with zarith. - rewrite <- (Z_div_mult ([|w2|] * [|w2|]) (2 ^ [|n|])); - auto with zarith; rewrite Zmult_comm. - rewrite <- ZnZ.spec_square_c; auto with zarith. - unfold w_square_c, ww_to_Z in H3; unfold w_digits,w_to_Z in H3. - rewrite <- H3; simpl. - rewrite H7; rewrite (fun x => Zmult_comm (2 ^ x)); - rewrite Zmult_assoc; rewrite BigNumPrelude.Z_div_plus_l; auto with zarith. - rewrite Zplus_mod; auto with zarith. - rewrite Z_mod_mult; auto with zarith. - rewrite Zplus_0_l; auto with zarith. - rewrite Zmod_mod; auto with zarith. - rewrite Zmod_small; auto with zarith. - split; auto with zarith. - apply Zdiv_lt_upper_bound; auto with zarith. - rewrite Zmult_comm; auto with zarith. - Qed. - - Let _power_mod := - fix pow_mod (x:w) (p:positive) {struct p} : w := - match p with - | xH => x - | xO p' => - let pow := pow_mod x p' in - _square_mod pow - | xI p' => - let pow := pow_mod x p' in - _mul_mod (_square_mod pow) x - end. - - Lemma _power_mod_spec: forall w t p, [|w|] = t mod [|b|] -> - [|_power_mod w p|] = (Zpower_pos [|w|] p) mod [|b|]. - intros w2 t p; elim p; simpl; auto with zarith. - intros p' Rec H. - assert (F: [|w2|] < [|b|]). - case (Z_mod_lt t [|b|]); auto with zarith. - replace (xI p') with (p' + p' + 1)%positive. - repeat rewrite Zpower_pos_is_exp; auto with zarith. - pose (t1 := [|_power_mod w2 p'|]). - rewrite _mul_mod_spec with (t1 := t1 * t1) - (t2 := t); auto with zarith. - rewrite _square_mod_spec with (t := Zpower_pos [|w2|] p'); auto with zarith. - rewrite Rec; auto with zarith. - assert (tmp: forall p, Zpower_pos p 1 = p); try (rewrite tmp; clear tmp). - intros p1; unfold Zpower_pos; simpl; ring. - rewrite <- Zmult_mod; auto with zarith. - rewrite Zmult_mod; auto with zarith. - rewrite Zmod_mod; auto with zarith. - rewrite <- Zmult_mod; auto with zarith. - simpl; unfold t1; apply _square_mod_spec with (t := Zpower_pos [|w2|] p'); auto with zarith. - rewrite xI_succ_xO; rewrite <- Pplus_diag. - rewrite Pplus_one_succ_r; auto. - intros p' Rec H. - replace (xO p') with (p' + p')%positive. - repeat rewrite Zpower_pos_is_exp; auto with zarith. - rewrite _square_mod_spec with (t := Zpower_pos [|w2|] p'); auto with zarith. - rewrite Rec; auto with zarith. - rewrite <- Zmult_mod; auto with zarith. - rewrite <- Pplus_diag; auto. - intros H. - assert (tmp: forall p, Zpower_pos p 1 = p); try (rewrite tmp; clear tmp). - intros p1; unfold Zpower_pos; simpl; ring. - rewrite Zmod_small; auto with zarith. - assert (F: [|w2|] < [|b|]). - case (Z_mod_lt t [|b|]); auto with zarith. - case (ZnZ.spec_to_Z w2); auto with zarith. - Qed. - - Definition make_mod_op := - mk_mod_op - _succ_mod _add_mod - _pred_mod _sub_mod - _mul_mod _square_mod _power_mod. - - Definition make_mod_spec: mod_spec make_mod_op. - apply mk_mod_spec. - exact _succ_mod_spec. - exact _add_mod_spec. - exact _pred_mod_spec. - exact _sub_mod_spec. - exact _mul_mod_spec. - exact _square_mod_spec. - exact _power_mod_spec. - Defined. - -(*********** Mersenne special **********) - - Variable p: positive. - Variable zp: w. - - Hypothesis zp_b: [|zp|] = Zpos p. - Hypothesis p_lt_w_digits: Zpos p <= Zpos w_digits. - - Let p1 := Pminus (xO w_digits) p. - - Theorem p_p1: Zpos p + Zpos p1 = Zpos (xO w_digits). - unfold p1. - rewrite Zpos_minus; auto with zarith. - rewrite Zmax_right; auto with zarith. - rewrite Zpos_xO; auto with zarith. - assert (0 < Zpos w_digits); auto with zarith. - Qed. - - Let zp1 := ww_sub ww_zdigits (WW w0 zp). - - Let spec_add2: forall x y, - [[w_add2 x y]] = [|x|] + [|y|]. - unfold w_add2. - intros xh xl; generalize (ZnZ.spec_add_c xh xl). - unfold w_add_c; case ZnZ.add_c; unfold interp_carry; simpl ww_to_Z. - intros w2 Hw2; simpl; unfold w_to_Z; rewrite Hw2. - unfold w0; rewrite ZnZ.spec_0; simpl; auto with zarith. - intros w2; rewrite Zmult_1_l; simpl. - unfold w_to_Z, w1; rewrite ZnZ.spec_1; auto with zarith. - rewrite Zmult_1_l; auto. - Qed. - - Let spec_ww_digits: - [[ww_zdigits]] = Zpos (xO w_digits). - Proof. - unfold w_to_Z, ww_zdigits. - rewrite spec_add2. - unfold w_to_Z, w_zdigits, w_digits. - rewrite ZnZ.spec_zdigits; auto. - rewrite Zpos_xO; auto with zarith. - Qed. - - Let spec_ww_to_Z := (spec_ww_to_Z _ _ ZnZ.spec_to_Z). - Let spec_ww_compare := spec_ww_compare _ _ _ _ ZnZ.spec_0 - ZnZ.spec_to_Z ZnZ.spec_compare. - Let spec_ww_sub := - spec_ww_sub w0 zp wWW zp1 w_opp_c w_opp_carry - w_sub_c w_opp w_sub w_sub_carry w_digits w_to_Z - ZnZ.spec_0 - ZnZ.spec_to_Z - ZnZ.spec_WW - ZnZ.spec_opp_c - ZnZ.spec_opp - ZnZ.spec_opp_carry - ZnZ.spec_sub_c - ZnZ.spec_sub - ZnZ.spec_sub_carry. - - Theorem zp1_b: [[zp1]] = Zpos p1. - change ([[DoubleSub.ww_sub w0 wWW w_opp_c w_opp_carry w_sub_c w_opp w_sub - w_sub_carry ww_zdigits (WW w0 zp)]] = - Zpos p1). - rewrite spec_ww_sub; auto with zarith. - rewrite spec_ww_digits; simpl ww_to_Z. - change (w_to_Z w0) with [|w0|]. - unfold w0; rewrite ZnZ.spec_0; autorewrite with rm10; auto. - change (w_to_Z zp) with [|zp|]. - rewrite zp_b. - rewrite Zmod_small; auto with zarith. - rewrite <- p_p1; auto with zarith. - unfold ww_digits; split; auto with zarith. - rewrite <- p_p1; auto with zarith. - assert (0 < Zpos p1); auto with zarith. - apply Zle_lt_trans with (Zpos (xO w_digits)); auto with zarith. - assert (0 < Zpos p); auto with zarith. - unfold base; apply Zpower2_lt_lin; auto with zarith. - Qed. - - Hypothesis p_b: [|b|] = 2 ^ (Zpos p) - 1. - - - Let w_pos_mod := ZnZ.pos_mod. - - Let add_mul_div := - DoubleLift.ww_add_mul_div w0 wWW wW0 w0W - ww_compare w_add_mul_div - ww_sub w_zdigits low. - - Let _mmul_mod x y := - let xy := w_mul_c x y in - match xy with - W0 => w0 - | WW xh xl => - let xl1 := w_pos_mod zp xl in - match add_mul_div zp1 W0 xy with - W0 => match w_compare xl1 b with - | Lt => xl1 - | Eq => w0 - | Gt => w1 - end - | WW _ xl2 => _add_mod xl1 xl2 - end - end. - - Hint Unfold w_digits. - - Lemma WW_0: forall x y, [[WW x y]] = 0 -> [|x|] = 0 /\ [|y|] =0. - intros x y; simpl; case (ZnZ.spec_to_Z x); intros H1 H2; - case (ZnZ.spec_to_Z y); intros H3 H4 H5. - case Zle_lt_or_eq with (1 := H1); clear H1; intros H1; auto with zarith. - absurd (0 < [|x|] * base (ZnZ.digits w_op) + [|y|]); auto with zarith. - unfold w_to_Z, w_digits in H5;auto with zarith. - match goal with |- _ < ?X + _ => - apply Zlt_le_trans with X; auto with zarith - end. - case Zle_lt_or_eq with (1 := H3); clear H3; intros H3; auto with zarith. - absurd (0 < [|x|] * base (ZnZ.digits w_op) + [|y|]); auto with zarith. - unfold w_to_Z, w_digits in H5;auto with zarith. - rewrite <- H1; rewrite Zmult_0_l; auto with zarith. - Qed. - - Theorem WW0_is_0: [[W0]] = 0. - simpl; auto. - Qed. - Hint Rewrite WW0_is_0: w_rewrite. - - Theorem mmul_aux0: Zpos (xO w_digits) - Zpos p1 = Zpos p. - unfold w_digits. - apply trans_equal with (Zpos p + Zpos p1 - Zpos p1); auto with zarith. - rewrite p_p1; auto with zarith. - Qed. - - Theorem mmul_aux1: 2 ^ Zpos w_digits = - 2 ^ (Zpos w_digits - Zpos p) * 2 ^ Zpos p. - rewrite <- Zpower_exp; auto with zarith. - eq_tac; auto with zarith. - Qed. - - Theorem mmul_aux2:forall x, - x mod (2 ^ Zpos p - 1) = - ((x / 2 ^ Zpos p) + (x mod 2 ^ Zpos p)) mod (2 ^ Zpos p - 1). - intros x; pattern x at 1; rewrite Z_div_mod_eq with (b := 2 ^ Zpos p); auto with zarith. - match goal with |- (?X * ?Y + ?Z) mod (?X - 1) = ?T => - replace (X * Y + Z) with (Y * (X - 1) + (Y + Z)); try ring - end. - rewrite Zplus_mod; auto with zarith. - rewrite Z_mod_mult; auto with zarith. - rewrite Zplus_0_l. - rewrite Zmod_mod; auto with zarith. - Qed. - - Theorem mmul_aux3:forall xh xl, - [[WW xh xl]] mod (2 ^ Zpos p) = [|xl|] mod (2 ^ Zpos p). - intros xh xl; simpl ww_to_Z; unfold base. - rewrite Zplus_mod; auto with zarith. - generalize mmul_aux1; unfold w_digits; intros tmp; rewrite tmp; - clear tmp. - rewrite Zmult_assoc. - rewrite Z_mod_mult; auto with zarith. - rewrite Zplus_0_l; apply Zmod_mod; auto with zarith. - Qed. - - Let spec_low: forall x, - [|low x|] = [[x]] mod base w_digits. - intros x; case x; simpl low; auto with zarith. - intros xh xl; simpl. - rewrite Zplus_comm; rewrite Z_mod_plus; auto with zarith. - rewrite Zmod_small; auto with zarith. - case (ZnZ.spec_to_Z xl); auto with zarith. - unfold base; auto with zarith. - Qed. - - Theorem mmul_aux4:forall x, - [[x]] < [|b|] * 2 ^ Zpos p -> - match add_mul_div zp1 W0 x with - W0 => 0 - | WW _ xl2 => [|xl2|] - end = [[x]] / 2 ^ Zpos p. - intros x Hx. - assert (Hp: [[zp1]] <= Zpos (xO w_digits)); auto with zarith. - rewrite zp1_b; rewrite <- p_p1; auto with zarith. - assert (0 <= Zpos p); auto with zarith. - generalize (@DoubleLift.spec_ww_add_mul_div w w0 wWW wW0 w0W - ww_compare w_add_mul_div ww_sub w_digits w_zdigits low w_to_Z - ZnZ.spec_0 ZnZ.spec_to_Z spec_ww_to_Z - ZnZ.spec_WW ZnZ.spec_WO ZnZ.spec_OW - spec_ww_compare ZnZ.spec_add_mul_div spec_ww_sub - ZnZ.spec_zdigits spec_low W0 x zp1 Hp). - unfold add_mul_div; - case DoubleLift.ww_add_mul_div; autorewrite with w_rewrite; auto. - rewrite Zmult_0_l; rewrite Zplus_0_l. - rewrite zp1_b. - generalize mmul_aux0; unfold w_digits; intros tmp; rewrite tmp. - rewrite Zmod_small; auto with zarith. - split; auto with zarith. - apply Z_div_pos; auto with zarith. - case (spec_ww_to_Z x); auto with zarith. - unfold base. - apply Zdiv_lt_upper_bound; auto with zarith. - rewrite <- Zpower_exp; auto with zarith. - apply Zlt_le_trans with (base (ww_digits (ZnZ.digits w_op))); auto with zarith. - case (spec_ww_to_Z x); auto with zarith. - unfold base; apply Zpower_le_monotone; auto with zarith. - split; auto with zarith. - assert (0 < Zpos p); auto with zarith. - intros w2 w3; rewrite Zmult_0_l; rewrite Zplus_0_l. - rewrite zp1_b. - generalize mmul_aux0; unfold w_digits; intros tmp; rewrite tmp; - clear tmp. - simpl ww_to_Z; rewrite Zmod_small; auto with zarith. - intros H1; - generalize (high_zero (WW w2 w3)); unfold w_digits;intros tmp; - simpl fst in tmp; simpl ww_to_Z in tmp;auto with zarith. - unfold w_to_Z in *. - rewrite tmp in H1; auto with zarith. clear tmp. - simpl ww_to_Z; rewrite H1; apply Zdiv_lt_upper_bound; auto with zarith. - unfold base; rewrite <- Zpower_exp; auto with zarith. - apply Zlt_le_trans with (1 := Hx). - apply Zle_trans with (2 ^ Zpos p * 2 ^ Zpos p). - rewrite p_b; apply Zmult_le_compat_r; auto with zarith. - rewrite <- Zpower_exp; auto with zarith. - apply Zpower_le_monotone; auto with zarith. - split; auto with zarith. - apply Z_div_pos; auto with zarith. - case (spec_ww_to_Z x); auto with zarith. - unfold base. - apply Zdiv_lt_upper_bound; auto with zarith. - rewrite <- Zpower_exp; auto with zarith. - apply Zlt_le_trans with (base (ww_digits (ZnZ.digits w_op))); auto with zarith. - case (spec_ww_to_Z x); auto with zarith. - unfold base; apply Zpower_le_monotone; auto with zarith. - split; auto with zarith. - assert (0 < Zpos p); auto with zarith. - Qed. - - Theorem mmul_aux5:forall xh xl, - [[WW xh xl]] < [|b|] * 2 ^ Zpos p -> - let xl1 := w_pos_mod zp xl in - let r := - match add_mul_div zp1 W0 (WW xh xl) with - W0 => match w_compare xl1 b with - | Lt => xl1 - | Eq => w0 - | Gt => w1 - end - | WW _ xl2 => _add_mod xl1 xl2 - end in - [|r|] = [[WW xh xl]] mod [|b|]. - intros xh xl Hx xl1 r; unfold r; clear r. - generalize (mmul_aux4 _ Hx). - simpl ww_to_Z; rewrite p_b. - rewrite mmul_aux2. - assert (Hp: [[zp1]] <= Zpos (xO w_digits)); auto with zarith. - rewrite zp1_b; rewrite <- p_p1; auto with zarith. - assert (0 <= Zpos p); auto with zarith. - generalize (@DoubleLift.spec_ww_add_mul_div w w0 wWW wW0 w0W - ww_compare w_add_mul_div ww_sub w_digits w_zdigits low w_to_Z - ZnZ.spec_0 ZnZ.spec_to_Z spec_ww_to_Z - ZnZ.spec_WW ZnZ.spec_WO ZnZ.spec_OW - spec_ww_compare ZnZ.spec_add_mul_div spec_ww_sub - ZnZ.spec_zdigits spec_low W0 (WW xh xl) zp1 Hp). - unfold add_mul_div; - case DoubleLift.ww_add_mul_div; autorewrite with w_rewrite; auto. - rewrite Zmult_0_l; rewrite Zplus_0_l. - rewrite zp1_b. - generalize mmul_aux0; unfold w_digits; intros tmp; rewrite tmp; clear tmp. - intros H1 H2. - rewrite <- H2. - rewrite Zplus_0_l. - generalize mmul_aux3; simpl ww_to_Z; intros tmp; rewrite tmp; clear tmp; - auto with zarith. - unfold xl1; unfold w_pos_mod. - rewrite <- p_b; rewrite <- zp_b. - rewrite <- ZnZ.spec_pos_mod; auto with zarith. - unfold w_compare; rewrite ZnZ.spec_compare; - case Zcompare_spec; intros Hc; - match goal with H: context[b] |- _ => - generalize H; clear H - end; try rewrite _w0_is_0. - intros H3; rewrite H3. - rewrite Z_mod_same; auto with zarith. - intros H3; rewrite Zmod_small; auto with zarith. - case (ZnZ.spec_to_Z (ZnZ.pos_mod zp xl)); unfold w_to_Z; auto with zarith. - rewrite p_b; rewrite ZnZ.spec_pos_mod; auto with zarith. - intros H3; assert (HH: [|xl|] mod 2 ^ Zpos p = 2 ^ Zpos p). - apply Zle_antisym; auto with zarith. - case (Z_mod_lt ([|xl|]) (2 ^ Zpos p)); auto with zarith. - rewrite zp_b in H3; auto with zarith. - rewrite zp_b; rewrite HH. - rewrite <- Zmod_minus_one; auto with zarith. - rewrite _w1_is_1; rewrite Zmod_small; auto with zarith. - rewrite Zmult_0_l; rewrite Zplus_0_l. - rewrite zp1_b. - generalize mmul_aux0; unfold w_digits; intros tmp; rewrite tmp; clear tmp. - intros w2 w3 H1 H2; rewrite <- H2. - generalize mmul_aux3; simpl ww_to_Z; intros tmp; rewrite tmp; clear tmp; - auto with zarith. - rewrite <- p_b; rewrite <- zp_b. - rewrite <- ZnZ.spec_pos_mod; auto with zarith. - unfold xl1; unfold w_pos_mod. - rewrite Zplus_comm. - apply _add_mod_correct; auto with zarith. - assert (tmp: forall x, 2 * x = x + x); auto with zarith; - rewrite tmp; apply Zplus_le_lt_compat; clear tmp; auto with zarith. - rewrite ZnZ.spec_pos_mod; auto with zarith. - rewrite p_b; case (Z_mod_lt [|xl|] (2 ^ Zpos p)); auto with zarith. - rewrite zp_b; auto with zarith. - rewrite H2; apply Zdiv_lt_upper_bound; auto with zarith. - Qed. - - Lemma _mmul_mod_spec: forall w1 w2 t1 t2, [|w1|] = t1 mod [|b|] -> [|w2|] = t2 mod [|b|] -> - [|_mmul_mod w1 w2|] = ([|w1|] * [|w2|]) mod [|b|]. - intros w2 w3 t1 t2; unfold _mmul_mod, w_mul_c; intros H H1. - assert (F: [|w2|] < [|b|]). - case (Z_mod_lt t1 [|b|]); auto with zarith. - assert (F': [|w3|] < [|b|]). - case (Z_mod_lt t2 [|b|]); auto with zarith. - match goal with |- context[ZnZ.mul_c ?x ?y] => - generalize (ZnZ.spec_mul_c x y); unfold interp_carry; - case (ZnZ.mul_c x y); autorewrite with w_rewrite - end; auto with zarith. - simpl; intros H2; rewrite <- H2; rewrite Zmod_small; - auto with zarith. - intros w4 w5 H2. - rewrite mmul_aux5; auto with zarith. - rewrite <- H2; auto. - unfold ww_to_Z,w_digits,w_to_Z; rewrite H2. - apply Zmult_lt_compat; auto with zarith. - case (ZnZ.spec_to_Z w2); auto with zarith. - case (ZnZ.spec_to_Z w3); auto with zarith. - Qed. - - Let _msquare_mod x := - let xy := w_square_c x in - match xy with - W0 => w0 - | WW xh xl => - let xl1 := w_pos_mod zp xl in - match add_mul_div zp1 W0 xy with - W0 => match w_compare xl1 b with - | Lt => xl1 - | Eq => w0 - | Gt => w1 - end - | WW _ xl2 => _add_mod xl1 xl2 - end - end. - - Lemma _msquare_mod_spec: forall w1 t1, [|w1|] = t1 mod [|b|] -> - [|_msquare_mod w1|] = ([|w1|] * [|w1|]) mod [|b|]. - intros w2 t2; unfold _msquare_mod, w_square_c; intros H. - assert (F: [|w2|] < [|b|]). - case (Z_mod_lt t2 [|b|]); auto with zarith. - match goal with |- context[ZnZ.square_c ?x] => - generalize (ZnZ.spec_square_c x); unfold interp_carry; - case (ZnZ.square_c x); autorewrite with w_rewrite - end; auto with zarith. - simpl; intros H2; rewrite <- H2; rewrite Zmod_small; - auto with zarith. - intros w4 w5 H2. - rewrite mmul_aux5; auto with zarith. - unfold ww_to_Z, w_to_Z ,w_digits; rewrite <- H2; auto. - unfold ww_to_Z,w_to_Z ,w_digits; rewrite H2. - apply Zmult_lt_compat; auto with zarith. - case (ZnZ.spec_to_Z w2); auto with zarith. - case (ZnZ.spec_to_Z w2); auto with zarith. - Qed. - - Definition mmake_mod_op := - mk_mod_op - _succ_mod _add_mod - _pred_mod _sub_mod - _mmul_mod _msquare_mod _power_mod. - - Definition mmake_mod_spec: mod_spec mmake_mod_op. - apply mk_mod_spec. - exact _succ_mod_spec. - exact _add_mod_spec. - exact _pred_mod_spec. - exact _sub_mod_spec. - exact _mmul_mod_spec. - exact _msquare_mod_spec. - exact _power_mod_spec. - Defined. - -End Mod_op. - -- cgit v1.2.3