From ef92beece3147f8af0764521e22cb7fc9a3f32a3 Mon Sep 17 00:00:00 2001 From: Andres Erbsen Date: Sat, 24 Feb 2018 10:17:35 -0500 Subject: coqprime in COQPATH (closes #269) --- coqprime/Coqprime/Permutation.v | 506 ---------------------------------------- 1 file changed, 506 deletions(-) delete mode 100644 coqprime/Coqprime/Permutation.v (limited to 'coqprime/Coqprime/Permutation.v') diff --git a/coqprime/Coqprime/Permutation.v b/coqprime/Coqprime/Permutation.v deleted file mode 100644 index eb6969882..000000000 --- a/coqprime/Coqprime/Permutation.v +++ /dev/null @@ -1,506 +0,0 @@ - -(*************************************************************) -(* This file is distributed under the terms of the *) -(* GNU Lesser General Public License Version 2.1 *) -(*************************************************************) -(* Benjamin.Gregoire@inria.fr Laurent.Thery@inria.fr *) -(*************************************************************) - -(********************************************************************** - Permutation.v - - Defintion and properties of permutations - **********************************************************************) -Require Export List. -Require Export ListAux. - -Section permutation. -Variable A : Set. - -(************************************** - Definition of permutations as sequences of adjacent transpositions - **************************************) - -Inductive permutation : list A -> list A -> Prop := - | permutation_nil : permutation nil nil - | permutation_skip : - forall (a : A) (l1 l2 : list A), - permutation l2 l1 -> permutation (a :: l2) (a :: l1) - | permutation_swap : - forall (a b : A) (l : list A), permutation (a :: b :: l) (b :: a :: l) - | permutation_trans : - forall l1 l2 l3 : list A, - permutation l1 l2 -> permutation l2 l3 -> permutation l1 l3. -Hint Constructors permutation. - -(************************************** - Reflexivity - **************************************) - -Theorem permutation_refl : forall l : list A, permutation l l. -simple induction l. -apply permutation_nil. -intros a l1 H. -apply permutation_skip with (1 := H). -Qed. -Hint Resolve permutation_refl. - -(************************************** - Symmetry - **************************************) - -Theorem permutation_sym : - forall l m : list A, permutation l m -> permutation m l. -intros l1 l2 H'; elim H'. -apply permutation_nil. -intros a l1' l2' H1 H2. -apply permutation_skip with (1 := H2). -intros a b l1'. -apply permutation_swap. -intros l1' l2' l3' H1 H2 H3 H4. -apply permutation_trans with (1 := H4) (2 := H2). -Qed. - -(************************************** - Compatibility with list length - **************************************) - -Theorem permutation_length : - forall l m : list A, permutation l m -> length l = length m. -intros l m H'; elim H'; simpl in |- *; auto. -intros l1 l2 l3 H'0 H'1 H'2 H'3. -rewrite <- H'3; auto. -Qed. - -(************************************** - A permutation of the nil list is the nil list - **************************************) - -Theorem permutation_nil_inv : forall l : list A, permutation l nil -> l = nil. -intros l H; generalize (permutation_length _ _ H); case l; simpl in |- *; - auto. -intros; discriminate. -Qed. - -(************************************** - A permutation of the singleton list is the singleton list - **************************************) - -Let permutation_one_inv_aux : - forall l1 l2 : list A, - permutation l1 l2 -> forall a : A, l1 = a :: nil -> l2 = a :: nil. -intros l1 l2 H; elim H; clear H l1 l2; auto. -intros a l3 l4 H0 H1 b H2. -injection H2; intros; subst; auto. -rewrite (permutation_nil_inv _ (permutation_sym _ _ H0)); auto. -intros; discriminate. -Qed. - -Theorem permutation_one_inv : - forall (a : A) (l : list A), permutation (a :: nil) l -> l = a :: nil. -intros a l H; apply permutation_one_inv_aux with (l1 := a :: nil); auto. -Qed. - -(************************************** - Compatibility with the belonging - **************************************) - -Theorem permutation_in : - forall (a : A) (l m : list A), permutation l m -> In a l -> In a m. -intros a l m H; elim H; simpl in |- *; auto; intuition. -Qed. - -(************************************** - Compatibility with the append function - **************************************) - -Theorem permutation_app_comp : - forall l1 l2 l3 l4, - permutation l1 l2 -> permutation l3 l4 -> permutation (l1 ++ l3) (l2 ++ l4). -intros l1 l2 l3 l4 H1; generalize l3 l4; elim H1; clear H1 l1 l2 l3 l4; - simpl in |- *; auto. -intros a b l l3 l4 H. -cut (permutation (l ++ l3) (l ++ l4)); auto. -intros; apply permutation_trans with (a :: b :: l ++ l4); auto. -elim l; simpl in |- *; auto. -intros l1 l2 l3 H H0 H1 H2 l4 l5 H3. -apply permutation_trans with (l2 ++ l4); auto. -Qed. -Hint Resolve permutation_app_comp. - -(************************************** - Swap two sublists - **************************************) - -Theorem permutation_app_swap : - forall l1 l2, permutation (l1 ++ l2) (l2 ++ l1). -intros l1; elim l1; auto. -intros; rewrite <- app_nil_end; auto. -intros a l H l2. -replace (l2 ++ a :: l) with ((l2 ++ a :: nil) ++ l). -apply permutation_trans with (l ++ l2 ++ a :: nil); auto. -apply permutation_trans with (((a :: nil) ++ l2) ++ l); auto. -simpl in |- *; auto. -apply permutation_trans with (l ++ (a :: nil) ++ l2); auto. -apply permutation_sym; auto. -replace (l2 ++ a :: l) with ((l2 ++ a :: nil) ++ l). -apply permutation_app_comp; auto. -elim l2; simpl in |- *; auto. -intros a0 l0 H0. -apply permutation_trans with (a0 :: a :: l0); auto. -apply (app_ass l2 (a :: nil) l). -apply (app_ass l2 (a :: nil) l). -Qed. - -(************************************** - A transposition is a permutation - **************************************) - -Theorem permutation_transposition : - forall a b l1 l2 l3, - permutation (l1 ++ a :: l2 ++ b :: l3) (l1 ++ b :: l2 ++ a :: l3). -intros a b l1 l2 l3. -apply permutation_app_comp; auto. -change - (permutation ((a :: nil) ++ l2 ++ (b :: nil) ++ l3) - ((b :: nil) ++ l2 ++ (a :: nil) ++ l3)) in |- *. -repeat rewrite <- app_ass. -apply permutation_app_comp; auto. -apply permutation_trans with ((b :: nil) ++ (a :: nil) ++ l2); auto. -apply permutation_app_swap; auto. -repeat rewrite app_ass. -apply permutation_app_comp; auto. -apply permutation_app_swap; auto. -Qed. - -(************************************** - An element of a list can be put on top of the list to get a permutation - **************************************) - -Theorem in_permutation_ex : - forall a l, In a l -> exists l1 : list A, permutation (a :: l1) l. -intros a l; elim l; simpl in |- *; auto. -intros H; case H; auto. -intros a0 l0 H [H0| H0]. -exists l0; rewrite H0; auto. -case H; auto; intros l1 Hl1; exists (a0 :: l1). -apply permutation_trans with (a0 :: a :: l1); auto. -Qed. - -(************************************** - A permutation of a cons can be inverted - **************************************) - -Let permutation_cons_ex_aux : - forall (a : A) (l1 l2 : list A), - permutation l1 l2 -> - forall l11 l12 : list A, - l1 = l11 ++ a :: l12 -> - exists l3 : list A, - (exists l4 : list A, - l2 = l3 ++ a :: l4 /\ permutation (l11 ++ l12) (l3 ++ l4)). -intros a l1 l2 H; elim H; clear H l1 l2. -intros l11 l12; case l11; simpl in |- *; intros; discriminate. -intros a0 l1 l2 H H0 l11 l12; case l11; simpl in |- *. -exists (nil (A:=A)); exists l1; simpl in |- *; split; auto. -injection H1; intros; subst; auto. -injection H1; intros H2 H3; rewrite <- H2; auto. -intros a1 l111 H1. -case (H0 l111 l12); auto. -injection H1; auto. -intros l3 (l4, (Hl1, Hl2)). -exists (a0 :: l3); exists l4; split; simpl in |- *; auto. -injection H1; intros; subst; auto. -injection H1; intros H2 H3; rewrite H3; auto. -intros a0 b l l11 l12; case l11; simpl in |- *. -case l12; try (intros; discriminate). -intros a1 l0 H; exists (b :: nil); exists l0; simpl in |- *; split; auto. -injection H; intros; subst; auto. -injection H; intros H1 H2 H3; rewrite H2; auto. -intros a1 l111; case l111; simpl in |- *. -intros H; exists (nil (A:=A)); exists (a0 :: l12); simpl in |- *; split; auto. -injection H; intros; subst; auto. -injection H; intros H1 H2 H3; rewrite H3; auto. -intros a2 H1111 H; exists (a2 :: a1 :: H1111); exists l12; simpl in |- *; - split; auto. -injection H; intros; subst; auto. -intros l1 l2 l3 H H0 H1 H2 l11 l12 H3. -case H0 with (1 := H3). -intros l4 (l5, (Hl1, Hl2)). -case H2 with (1 := Hl1). -intros l6 (l7, (Hl3, Hl4)). -exists l6; exists l7; split; auto. -apply permutation_trans with (1 := Hl2); auto. -Qed. - -Theorem permutation_cons_ex : - forall (a : A) (l1 l2 : list A), - permutation (a :: l1) l2 -> - exists l3 : list A, - (exists l4 : list A, l2 = l3 ++ a :: l4 /\ permutation l1 (l3 ++ l4)). -intros a l1 l2 H. -apply (permutation_cons_ex_aux a (a :: l1) l2 H nil l1); simpl in |- *; auto. -Qed. - -(************************************** - A permutation can be simply inverted if the two list starts with a cons - **************************************) - -Theorem permutation_inv : - forall (a : A) (l1 l2 : list A), - permutation (a :: l1) (a :: l2) -> permutation l1 l2. -intros a l1 l2 H; case permutation_cons_ex with (1 := H). -intros l3 (l4, (Hl1, Hl2)). -apply permutation_trans with (1 := Hl2). -generalize Hl1; case l3; simpl in |- *; auto. -intros H1; injection H1; intros H2; rewrite H2; auto. -intros a0 l5 H1; injection H1; intros H2 H3; rewrite H2; rewrite H3; auto. -apply permutation_trans with (a0 :: l4 ++ l5); auto. -apply permutation_skip; apply permutation_app_swap. -apply (permutation_app_swap (a0 :: l4) l5). -Qed. - -(************************************** - Take a list and return tle list of all pairs of an element of the - list and the remaining list - **************************************) - -Fixpoint split_one (l : list A) : list (A * list A) := - match l with - | nil => nil (A:=A * list A) - | a :: l1 => - (a, l1) - :: map (fun p : A * list A => (fst p, a :: snd p)) (split_one l1) - end. - -(************************************** - The pairs of the list are a permutation - **************************************) - -Theorem split_one_permutation : - forall (a : A) (l1 l2 : list A), - In (a, l1) (split_one l2) -> permutation (a :: l1) l2. -intros a l1 l2; generalize a l1; elim l2; clear a l1 l2; simpl in |- *; auto. -intros a l1 H1; case H1. -intros a l H a0 l1 [H0| H0]. -injection H0; intros H1 H2; rewrite H2; rewrite H1; auto. -generalize H H0; elim (split_one l); simpl in |- *; auto. -intros H1 H2; case H2. -intros a1 l0 H1 H2 [H3| H3]; auto. -injection H3; intros H4 H5; (rewrite <- H4; rewrite <- H5). -apply permutation_trans with (a :: fst a1 :: snd a1); auto. -apply permutation_skip. -apply H2; auto. -case a1; simpl in |- *; auto. -Qed. - -(************************************** - All elements of the list are there - **************************************) - -Theorem split_one_in_ex : - forall (a : A) (l1 : list A), - In a l1 -> exists l2 : list A, In (a, l2) (split_one l1). -intros a l1; elim l1; simpl in |- *; auto. -intros H; case H. -intros a0 l H [H0| H0]; auto. -exists l; left; subst; auto. -case H; auto. -intros x H1; exists (a0 :: x); right; auto. -apply - (in_map (fun p : A * list A => (fst p, a0 :: snd p)) (split_one l) (a, x)); - auto. -Qed. - -(************************************** - An auxillary function to generate all permutations - **************************************) - -Fixpoint all_permutations_aux (l : list A) (n : nat) {struct n} : - list (list A) := - match n with - | O => nil :: nil - | S n1 => - flat_map - (fun p : A * list A => - map (cons (fst p)) (all_permutations_aux (snd p) n1)) ( - split_one l) - end. -(************************************** - Generate all the permutations - **************************************) - -Definition all_permutations (l : list A) := all_permutations_aux l (length l). - -(************************************** - All the elements of the list are permutations - **************************************) - -Let all_permutations_aux_permutation : - forall (n : nat) (l1 l2 : list A), - n = length l2 -> In l1 (all_permutations_aux l2 n) -> permutation l1 l2. -intros n; elim n; simpl in |- *; auto. -intros l1 l2; case l2. -simpl in |- *; intros H0 [H1| H1]. -rewrite <- H1; auto. -case H1. -simpl in |- *; intros; discriminate. -intros n0 H l1 l2 H0 H1. -case in_flat_map_ex with (1 := H1). -clear H1; intros x; case x; clear x; intros a1 l3 (H1, H2). -case in_map_inv with (1 := H2). -simpl in |- *; intros y (H3, H4). -rewrite H4; auto. -apply permutation_trans with (a1 :: l3); auto. -apply permutation_skip; auto. -apply H with (2 := H3). -apply eq_add_S. -apply trans_equal with (1 := H0). -change (length l2 = length (a1 :: l3)) in |- *. -apply permutation_length; auto. -apply permutation_sym; apply split_one_permutation; auto. -apply split_one_permutation; auto. -Qed. - -Theorem all_permutations_permutation : - forall l1 l2 : list A, In l1 (all_permutations l2) -> permutation l1 l2. -intros l1 l2 H; apply all_permutations_aux_permutation with (n := length l2); - auto. -Qed. - -(************************************** - A permutation is in the list - **************************************) - -Let permutation_all_permutations_aux : - forall (n : nat) (l1 l2 : list A), - n = length l2 -> permutation l1 l2 -> In l1 (all_permutations_aux l2 n). -intros n; elim n; simpl in |- *; auto. -intros l1 l2; case l2. -intros H H0; rewrite permutation_nil_inv with (1 := H0); auto with datatypes. -simpl in |- *; intros; discriminate. -intros n0 H l1; case l1. -intros l2 H0 H1; - rewrite permutation_nil_inv with (1 := permutation_sym _ _ H1) in H0; - discriminate. -clear l1; intros a1 l1 l2 H1 H2. -case (split_one_in_ex a1 l2); auto. -apply permutation_in with (1 := H2); auto with datatypes. -intros x H0. -apply in_flat_map with (b := (a1, x)); auto. -apply in_map; simpl in |- *. -apply H; auto. -apply eq_add_S. -apply trans_equal with (1 := H1). -change (length l2 = length (a1 :: x)) in |- *. -apply permutation_length; auto. -apply permutation_sym; apply split_one_permutation; auto. -apply permutation_inv with (a := a1). -apply permutation_trans with (1 := H2). -apply permutation_sym; apply split_one_permutation; auto. -Qed. - -Theorem permutation_all_permutations : - forall l1 l2 : list A, permutation l1 l2 -> In l1 (all_permutations l2). -intros l1 l2 H; unfold all_permutations in |- *; - apply permutation_all_permutations_aux; auto. -Qed. - -(************************************** - Permutation is decidable - **************************************) - -Definition permutation_dec : - (forall a b : A, {a = b} + {a <> b}) -> - forall l1 l2 : list A, {permutation l1 l2} + {~ permutation l1 l2}. -intros H l1 l2. -case (In_dec (list_eq_dec H) l1 (all_permutations l2)). -intros i; left; apply all_permutations_permutation; auto. -intros i; right; contradict i; apply permutation_all_permutations; auto. -Defined. - -End permutation. - -(************************************** - Hints - **************************************) - -Hint Constructors permutation. -Hint Resolve permutation_refl. -Hint Resolve permutation_app_comp. -Hint Resolve permutation_app_swap. - -(************************************** - Implicits - **************************************) - -Arguments permutation [A] _ _. -Arguments split_one [A] _. -Arguments all_permutations [A] _. -Arguments permutation_dec [A]. - -(************************************** - Permutation is compatible with map - **************************************) - -Theorem permutation_map : - forall (A B : Set) (f : A -> B) l1 l2, - permutation l1 l2 -> permutation (map f l1) (map f l2). -intros A B f l1 l2 H; elim H; simpl in |- *; auto. -intros l0 l3 l4 H0 H1 H2 H3; apply permutation_trans with (2 := H3); auto. -Qed. -Hint Resolve permutation_map. - -(************************************** - Permutation of a map can be inverted - *************************************) - -Let permutation_map_ex_aux : - forall (A B : Set) (f : A -> B) l1 l2 l3, - permutation l1 l2 -> - l1 = map f l3 -> exists l4, permutation l4 l3 /\ l2 = map f l4. -intros A1 B1 f l1 l2 l3 H; generalize l3; elim H; clear H l1 l2 l3. -intros l3; case l3; simpl in |- *; auto. -intros H; exists (nil (A:=A1)); auto. -intros; discriminate. -intros a0 l1 l2 H H0 l3; case l3; simpl in |- *; auto. -intros; discriminate. -intros a1 l H1; case (H0 l); auto. -injection H1; auto. -intros l5 (H2, H3); exists (a1 :: l5); split; simpl in |- *; auto. -injection H1; intros; subst; auto. -intros a0 b l l3; case l3. -intros; discriminate. -intros a1 l0; case l0; simpl in |- *. -intros; discriminate. -intros a2 l1 H; exists (a2 :: a1 :: l1); split; simpl in |- *; auto. -injection H; intros; subst; auto. -intros l1 l2 l3 H H0 H1 H2 l0 H3. -case H0 with (1 := H3); auto. -intros l4 (HH1, HH2). -case H2 with (1 := HH2); auto. -intros l5 (HH3, HH4); exists l5; split; auto. -apply permutation_trans with (1 := HH3); auto. -Qed. - -Theorem permutation_map_ex : - forall (A B : Set) (f : A -> B) l1 l2, - permutation (map f l1) l2 -> - exists l3, permutation l3 l1 /\ l2 = map f l3. -intros A0 B f l1 l2 H; apply permutation_map_ex_aux with (l1 := map f l1); - auto. -Qed. - -(************************************** - Permutation is compatible with flat_map - **************************************) - -Theorem permutation_flat_map : - forall (A B : Set) (f : A -> list B) l1 l2, - permutation l1 l2 -> permutation (flat_map f l1) (flat_map f l2). -intros A B f l1 l2 H; elim H; simpl in |- *; auto. -intros a b l; auto. -repeat rewrite <- app_ass. -apply permutation_app_comp; auto. -intros k3 l4 l5 H0 H1 H2 H3; apply permutation_trans with (1 := H1); auto. -Qed. -- cgit v1.2.3