From ef92beece3147f8af0764521e22cb7fc9a3f32a3 Mon Sep 17 00:00:00 2001 From: Andres Erbsen Date: Sat, 24 Feb 2018 10:17:35 -0500 Subject: coqprime in COQPATH (closes #269) --- coqprime/Coqprime/PGroup.v | 347 --------------------------------------------- 1 file changed, 347 deletions(-) delete mode 100644 coqprime/Coqprime/PGroup.v (limited to 'coqprime/Coqprime/PGroup.v') diff --git a/coqprime/Coqprime/PGroup.v b/coqprime/Coqprime/PGroup.v deleted file mode 100644 index 5d8dc5d35..000000000 --- a/coqprime/Coqprime/PGroup.v +++ /dev/null @@ -1,347 +0,0 @@ - -(*************************************************************) -(* This file is distributed under the terms of the *) -(* GNU Lesser General Public License Version 2.1 *) -(*************************************************************) -(* Benjamin.Gregoire@inria.fr Laurent.Thery@inria.fr *) -(*************************************************************) - -(********************************************************************** - PGroup.v - - Build the group of pairs modulo needed for the theorem of - lucas lehmer - - Definition: PGroup - **********************************************************************) -Require Import ZArith. -Require Import Znumtheory. -Require Import Tactic. -Require Import Wf_nat. -Require Import ListAux. -Require Import UList. -Require Import FGroup. -Require Import EGroup. -Require Import IGroup. - -Open Scope Z_scope. - -Definition base := 3. - - -(************************************** - Equality is decidable on pairs - **************************************) - -Definition P_dec: forall p q: Z * Z, {p = q} + {p <> q}. -intros p1 q1; case p1; case q1; intros z t x y; case (Z_eq_dec x z); intros H1. -case (Z_eq_dec y t); intros H2. -left; eq_tac; auto. -right; contradict H2; injection H2; auto. -right; contradict H1; injection H1; auto. -Defined. - - -(************************************** - Addition of two pairs - **************************************) - -Definition pplus (p q: Z * Z) := let (x ,y) := p in let (z,t) := q in (x + z, y + t). - -(************************************** - Properties of addition - **************************************) - -Theorem pplus_assoc: forall p q r, (pplus p (pplus q r)) = (pplus (pplus p q) r). -intros p q r; case p; case q; case r; intros r1 r2 q1 q2 p1 p2; unfold pplus. -eq_tac; ring. -Qed. - -Theorem pplus_comm: forall p q, (pplus p q) = (pplus q p). -intros p q; case p; case q; intros q1 q2 p1 p2; unfold pplus. -eq_tac; ring. -Qed. - -(************************************** - Multiplication of two pairs - **************************************) - -Definition pmult (p q: Z * Z) := let (x ,y) := p in let (z,t) := q in (x * z + base * y * t, x * t + y * z). - -(************************************** - Properties of multiplication - **************************************) - -Theorem pmult_assoc: forall p q r, (pmult p (pmult q r)) = (pmult (pmult p q) r). -intros p q r; case p; case q; case r; intros r1 r2 q1 q2 p1 p2; unfold pmult. -eq_tac; ring. -Qed. - -Theorem pmult_0_l: forall p, (pmult (0, 0) p) = (0, 0). -intros p; case p; intros x y; unfold pmult; eq_tac; ring. -Qed. - -Theorem pmult_0_r: forall p, (pmult p (0, 0)) = (0, 0). -intros p; case p; intros x y; unfold pmult; eq_tac; ring. -Qed. - -Theorem pmult_1_l: forall p, (pmult (1, 0) p) = p. -intros p; case p; intros x y; unfold pmult; eq_tac; ring. -Qed. - -Theorem pmult_1_r: forall p, (pmult p (1, 0)) = p. -intros p; case p; intros x y; unfold pmult; eq_tac; ring. -Qed. - -Theorem pmult_comm: forall p q, (pmult p q) = (pmult q p). -intros p q; case p; case q; intros q1 q2 p1 p2; unfold pmult. -eq_tac; ring. -Qed. - -Theorem pplus_pmult_dist_l: forall p q r, (pmult p (pplus q r)) = (pplus (pmult p q) (pmult p r)). -intros p q r; case p; case q; case r; intros r1 r2 q1 q2 p1 p2; unfold pplus, pmult. -eq_tac; ring. -Qed. - - -Theorem pplus_pmult_dist_r: forall p q r, (pmult (pplus q r) p) = (pplus (pmult q p) (pmult r p)). -intros p q r; case p; case q; case r; intros r1 r2 q1 q2 p1 p2; unfold pplus, pmult. -eq_tac; ring. -Qed. - -(************************************** - In this section we create the group PGroup of inversible elements {(p, q) | 0 <= p < m /\ 0 <= q < m} - **************************************) -Section Mod. - -Variable m : Z. - -Hypothesis m_pos: 1 < m. - -(************************************** - mkLine creates {(a, p) | 0 <= p < n} - **************************************) - -Fixpoint mkLine (a: Z) (n: nat) {struct n} : list (Z * Z) := - (a, Z_of_nat n) :: match n with O => nil | (S n1) => mkLine a n1 end. - -(************************************** - Some properties of mkLine - **************************************) - -Theorem mkLine_length: forall a n, length (mkLine a n) = (n + 1)%nat. -intros a n; elim n; simpl; auto. -Qed. - -Theorem mkLine_in: forall a n p, 0 <= p <= Z_of_nat n -> (In (a, p) (mkLine a n)). -intros a n; elim n. -simpl; auto with zarith. -intros p (H1, H2); replace p with 0; auto with zarith. -intros n1 Rec p (H1, H2). -case (Zle_lt_or_eq p (Z_of_nat (S n1))); auto with zarith. -rewrite inj_S in H2; auto with zarith. -rewrite inj_S; auto with zarith. -intros H3; right; apply Rec; auto with zarith. -intros H3; subst; simpl; auto. -Qed. - -Theorem in_mkLine: forall a n p, In p (mkLine a n) -> exists q, 0 <= q <= Z_of_nat n /\ p = (a, q). -intros a n p; elim n; clear n. -simpl; intros [H1 | H1]; exists 0; auto with zarith; case H1. -simpl; intros n Rec [H1 | H1]; auto. -exists (Z_of_nat (S n)); auto with zarith. -case Rec; auto; intros q ((H2, H3), H4); exists q; repeat split; auto with zarith. -change (q <= Z_of_nat (S n)). -rewrite inj_S; auto with zarith. -Qed. - -Theorem mkLine_ulist: forall a n, ulist (mkLine a n). -intros a n; elim n; simpl; auto. -intros n1 H; apply ulist_cons; auto. -change (~ In (a, Z_of_nat (S n1)) (mkLine a n1)). -rewrite inj_S; intros H1. -case in_mkLine with (1 := H1); auto with zarith. -intros x ((H2, H3), H4); injection H4. -intros H5; subst; auto with zarith. -Qed. - -(************************************** - mkRect creates the list {(p, q) | 0 <= p < n /\ 0 <= q < m} - **************************************) - -Fixpoint mkRect (n m: nat) {struct n} : list (Z * Z) := - (mkLine (Z_of_nat n) m) ++ match n with O => nil | (S n1) => mkRect n1 m end. - -(************************************** - Some properties of mkRect - **************************************) - -Theorem mkRect_length: forall n m, length (mkRect n m) = ((n + 1) * (m + 1))%nat. -intros n; elim n; simpl; auto. -intros n1; rewrite <- app_nil_end; rewrite mkLine_length; rewrite plus_0_r; auto. -intros n1 Rec m1; rewrite length_app; rewrite Rec; rewrite mkLine_length; auto. -Qed. - -Theorem mkRect_in: forall n m p q, 0 <= p <= Z_of_nat n -> 0 <= q <= Z_of_nat m -> (In (p, q) (mkRect n m)). -intros n m1; elim n; simpl. -intros p q (H1, H2) (H3, H4); replace p with 0; auto with zarith. -rewrite <- app_nil_end; apply mkLine_in; auto. -intros n1 Rec p q (H1, H2) (H3, H4). -case (Zle_lt_or_eq p (Z_of_nat (S n1))); auto with zarith; intros H5. -rewrite inj_S in H5; apply in_or_app; auto with zarith. -apply in_or_app; left; subst; apply mkLine_in; auto with zarith. -Qed. - -Theorem in_mkRect: forall n m p, In p (mkRect n m) -> exists p1, exists p2, 0 <= p1 <= Z_of_nat n /\ 0 <= p2 <= Z_of_nat m /\ p = (p1, p2). -intros n m1 p; elim n; clear n; simpl. -rewrite <- app_nil_end; intros H1. -case in_mkLine with (1 := H1). -intros p2 (H2, H3); exists 0; exists p2; auto with zarith. -intros n Rec H1. -case in_app_or with (1 := H1); intros H2. -case in_mkLine with (1 := H2). -intros p2 (H3, H4); exists (Z_of_nat (S n)); exists p2; subst; simpl; auto with zarith. -case Rec with (1 := H2); auto. -intros p1 (p2, (H3, (H4, H5))); exists p1; exists p2; repeat split; auto with zarith. -change (p1 <= Z_of_nat (S n)). -rewrite inj_S; auto with zarith. -Qed. - -Theorem mkRect_ulist: forall n m, ulist (mkRect n m). -intros n; elim n; simpl; auto. -intros n1; rewrite <- app_nil_end; apply mkLine_ulist; auto. -intros n1 Rec m1; apply ulist_app; auto. -apply mkLine_ulist. -intros a H1 H2. -case in_mkLine with (1 := H1); intros p1 ((H3, H4), H5). -case in_mkRect with (1 := H2); intros p2 (p3, ((H6, H7), ((H8, H9), H10))). -subst; injection H10; clear H10; intros; subst. -contradict H7. -change (~ Z_of_nat (S n1) <= Z_of_nat n1). -rewrite inj_S; auto with zarith. -Qed. - -(************************************** - mL is the list {(p, q) | 0 <= p < m-1 /\ 0 <= q < m - 1} - **************************************) -Definition mL := mkRect (Zabs_nat (m - 1)) (Zabs_nat (m -1)). - -(************************************** - Some properties of mL - **************************************) - -Theorem mL_length : length mL = Zabs_nat (m * m). -unfold mL; rewrite mkRect_length; simpl; apply inj_eq_rev. -repeat (rewrite inj_mult || rewrite inj_plus || rewrite inj_Zabs_nat || rewrite Zabs_eq); simpl; auto with zarith. -eq_tac; auto with zarith. -Qed. - -Theorem mL_in: forall p q, 0 <= p < m -> 0 <= q < m -> (In (p, q) mL). -intros p q (H1, H2) (H3, H4); unfold mL; apply mkRect_in; rewrite inj_Zabs_nat; - rewrite Zabs_eq; auto with zarith. -Qed. - -Theorem in_mL: forall p, In p mL-> exists p1, exists p2, 0 <= p1 < m /\ 0 <= p2 < m /\ p = (p1, p2). -unfold mL; intros p H1; case in_mkRect with (1 := H1). -repeat (rewrite inj_Zabs_nat || rewrite Zabs_eq); auto with zarith. -intros p1 (p2, ((H2, H3), ((H4, H5), H6))); exists p1; exists p2; repeat split; auto with zarith. -Qed. - -Theorem mL_ulist: ulist mL. -unfold mL; apply mkRect_ulist; auto. -Qed. - -(************************************** - We define zpmult the multiplication of pairs module m - **************************************) - -Definition zpmult (p q: Z * Z) := let (x ,y) := pmult p q in (Zmod x m, Zmod y m). - -(************************************** - Some properties of zpmult - **************************************) - -Theorem zpmult_internal: forall p q, (In (zpmult p q) mL). -intros p q; unfold zpmult; case (pmult p q); intros z y; apply mL_in; auto with zarith. -apply Z_mod_lt; auto with zarith. -apply Z_mod_lt; auto with zarith. -Qed. - -Theorem zpmult_assoc: forall p q r, (zpmult p (zpmult q r)) = (zpmult (zpmult p q) r). -assert (U: 0 < m); auto with zarith. -intros p q r; unfold zpmult. -generalize (pmult_assoc p q r). -case (pmult p q); intros x1 x2. -case (pmult q r); intros y1 y2. -case p; case r; unfold pmult. -intros z1 z2 t1 t2 H. -match goal with - H: (?X, ?Y) = (?Z, ?T) |- _ => - assert (H1: X = Z); assert (H2: Y = T); try (injection H; simpl; auto; fail); clear H -end. -eq_tac. -generalize (f_equal (fun x => x mod m) H1). -repeat rewrite <- Zmult_assoc. -repeat (rewrite (fun x => Zplus_mod (t1 * x))); auto. -repeat (rewrite (fun x => Zplus_mod (x1 * x))); auto. -repeat (rewrite (fun x => Zplus_mod (x1 mod m * x))); auto. -repeat (rewrite (Zmult_mod t1)); auto. -repeat (rewrite (Zmult_mod x1)); auto. -repeat (rewrite (Zmult_mod base)); auto. -repeat (rewrite (Zmult_mod t2)); auto. -repeat (rewrite (Zmult_mod x2)); auto. -repeat (rewrite (Zmult_mod (t2 mod m))); auto. -repeat (rewrite (Zmult_mod (x1 mod m))); auto. -repeat (rewrite (Zmult_mod (x2 mod m))); auto. -repeat (rewrite Zmod_mod); auto. -generalize (f_equal (fun x => x mod m) H2). -repeat (rewrite (fun x => Zplus_mod (t1 * x))); auto. -repeat (rewrite (fun x => Zplus_mod (x1 * x))); auto. -repeat (rewrite (fun x => Zplus_mod (x1 mod m * x))); auto. -repeat (rewrite (Zmult_mod t1)); auto. -repeat (rewrite (Zmult_mod x1)); auto. -repeat (rewrite (Zmult_mod t2)); auto. -repeat (rewrite (Zmult_mod x2)); auto. -repeat (rewrite (Zmult_mod (t2 mod m))); auto. -repeat (rewrite (Zmult_mod (x1 mod m))); auto. -repeat (rewrite (Zmult_mod (x2 mod m))); auto. -repeat (rewrite Zmod_mod); auto. -Qed. - -Theorem zpmult_0_l: forall p, (zpmult (0, 0) p) = (0, 0). -intros p; case p; intros x y; unfold zpmult, pmult; simpl. -rewrite Zmod_small; auto with zarith. -Qed. - -Theorem zpmult_1_l: forall p, In p mL -> zpmult (1, 0) p = p. -intros p H; case in_mL with (1 := H); clear H; intros p1 (p2, ((H1, H2), (H3, H4))); subst. -unfold zpmult; rewrite pmult_1_l. -repeat rewrite Zmod_small; auto with zarith. -Qed. - -Theorem zpmult_1_r: forall p, In p mL -> zpmult p (1, 0) = p. -intros p H; case in_mL with (1 := H); clear H; intros p1 (p2, ((H1, H2), (H3, H4))); subst. -unfold zpmult; rewrite pmult_1_r. -repeat rewrite Zmod_small; auto with zarith. -Qed. - -Theorem zpmult_comm: forall p q, zpmult p q = zpmult q p. -intros p q; unfold zpmult; rewrite pmult_comm; auto. -Qed. - -(************************************** - We are now ready to build our group - **************************************) - -Definition PGroup : (FGroup zpmult). -apply IGroup with (support := mL) (e:= (1, 0)). -exact P_dec. -apply mL_ulist. -apply mL_in; auto with zarith. -intros; apply zpmult_internal. -intros; apply zpmult_assoc. -exact zpmult_1_l. -exact zpmult_1_r. -Defined. - -End Mod. -- cgit v1.2.3