From accc9fa1f5689d1bf57d3024c4ad293fd10f3617 Mon Sep 17 00:00:00 2001 From: Jason Gross Date: Wed, 22 Jun 2016 11:47:16 -0700 Subject: Make Coq 8.5 the default target for Fiat-Crypto Instructions for 8.4 build in the README --- coqprime-8.4/Coqprime/LucasLehmer.v | 597 ++++++++++++++++++++++++++++++++++++ 1 file changed, 597 insertions(+) create mode 100644 coqprime-8.4/Coqprime/LucasLehmer.v (limited to 'coqprime-8.4/Coqprime/LucasLehmer.v') diff --git a/coqprime-8.4/Coqprime/LucasLehmer.v b/coqprime-8.4/Coqprime/LucasLehmer.v new file mode 100644 index 000000000..c459195a8 --- /dev/null +++ b/coqprime-8.4/Coqprime/LucasLehmer.v @@ -0,0 +1,597 @@ + +(*************************************************************) +(* This file is distributed under the terms of the *) +(* GNU Lesser General Public License Version 2.1 *) +(*************************************************************) +(* Benjamin.Gregoire@inria.fr Laurent.Thery@inria.fr *) +(*************************************************************) + +(********************************************************************** + LucasLehamer.v + + Build the sequence for the primality test of Mersenne numbers + + Definition: LucasLehmer + **********************************************************************) +Require Import Coq.ZArith.ZArith. +Require Import Coqprime.ZCAux. +Require Import Coqprime.Tactic. +Require Import Coq.Arith.Wf_nat. +Require Import Coqprime.NatAux. +Require Import Coqprime.UList. +Require Import Coqprime.ListAux. +Require Import Coqprime.FGroup. +Require Import Coqprime.EGroup. +Require Import Coqprime.PGroup. +Require Import Coqprime.IGroup. + +Open Scope Z_scope. + +(************************************** + The seeds of the serie + **************************************) + +Definition w := (2, 1). + +Definition v := (2, -1). + +Theorem w_plus_v: pplus w v = (4, 0). +simpl; auto. +Qed. + +Theorem w_mult_v : pmult w v = (1, 0). +simpl; auto. +Qed. + +(************************************** + Definition of the power function for pairs p^n + **************************************) + +Definition ppow p n := match n with Zpos q => iter_pos q _ (pmult p) (1, 0) | _ => (1, 0) end. + +(************************************** + Some properties of ppow + **************************************) + +Theorem ppow_0: forall n, ppow n 0 = (1, 0). +simpl; auto. +Qed. + +Theorem ppow_1: forall n, ppow (1, 0) n = (1, 0). +intros n; case n; simpl; auto. +intros p; apply iter_pos_invariant with (Inv := fun x => x = (1, 0)); auto. +intros x H; rewrite H; auto. +Qed. + +Theorem ppow_op: forall a b p, iter_pos p _ (pmult a) b = pmult (iter_pos p _ (pmult a) (1, 0)) b. +intros a b p; generalize b; elim p; simpl; auto; clear b p. +intros p Rec b. +rewrite (Rec b). +try rewrite (fun x y => Rec (pmult x y)); try rewrite (fun x y => Rec (iter_pos p _ x y)); auto. +repeat rewrite pmult_assoc; auto. +intros p Rec b. +rewrite (Rec b); try rewrite (fun x y => Rec (pmult x y)); try rewrite (fun x y => Rec (iter_pos p _ x y)); auto. +repeat rewrite pmult_assoc; auto. +intros b; rewrite pmult_1_r; auto. +Qed. + +Theorem ppow_add: forall n m p, 0 <= m -> 0 <= p -> ppow n (m + p) = pmult (ppow n m) (ppow n p). +intros n m; case m; clear m. +intros p _ _; rewrite ppow_0; rewrite pmult_1_l; auto. +2: intros p m H; contradict H; auto with zarith. +intros p1 m _; case m. +intros _; rewrite Zplus_0_r; simpl; apply sym_equal; apply pmult_1_r. +2: intros p2 H; contradict H; auto with zarith. +intros p2 _; simpl. +rewrite iter_pos_plus. +rewrite ppow_op; auto. +Qed. + +Theorem ppow_ppow: forall n m p, 0 <= n -> 0 <= m -> ppow p (n * m ) = ppow (ppow p n) m. +intros n m; case n. +intros p _ Hm; rewrite Zmult_0_l. +rewrite ppow_0; apply sym_equal; apply ppow_1. +2: intros p p1 H; contradict H; auto with zarith. +intros p1 p _; case m; simpl; auto. +intros p2 _; pattern p2; apply Pind; simpl; auto. +rewrite Pmult_1_r; rewrite pmult_1_r; auto. +intros p3 Rec; rewrite Pplus_one_succ_r; rewrite Pmult_plus_distr_l. +rewrite Pmult_1_r. +simpl; repeat rewrite iter_pos_plus; simpl. +rewrite pmult_1_r. +rewrite ppow_op; try rewrite Rec; auto. +apply sym_equal; apply ppow_op; auto. +Qed. + + +Theorem ppow_mult: forall n m p, 0 <= n -> ppow (pmult m p) n = pmult (ppow m n) (ppow p n). +intros n m p; case n; simpl; auto. +intros p1 _; pattern p1; apply Pind; simpl; auto. +repeat rewrite pmult_1_r; auto. +intros p3 Rec; rewrite Pplus_one_succ_r. +repeat rewrite iter_pos_plus; simpl. +repeat rewrite (fun x y z => ppow_op x (pmult y z)) ; auto. +rewrite Rec. +repeat rewrite pmult_1_r; auto. +repeat rewrite <- pmult_assoc; try eq_tac; auto. +rewrite (fun x y => pmult_comm (iter_pos p3 _ x y) p); auto. +rewrite (pmult_assoc m); try apply pmult_comm; auto. +Qed. + +(************************************** + We can now define our series of pairs s + **************************************) + +Definition s n := pplus (ppow w (2 ^ n)) (ppow v (2 ^ n)). + +(************************************** + Some properties of s + **************************************) + +Theorem s0 : s 0 = (4, 0). +simpl; auto. +Qed. + +Theorem sn_aux: forall n, 0 <= n -> s (n+1) = (pplus (pmult (s n) (s n)) (-2, 0)). +intros n Hn. +assert (Hu: 0 <= 2 ^n); auto with zarith. +set (y := (fst (s n) * fst (s n) - 2, 0)). +unfold s; simpl; rewrite Zpower_exp; auto with zarith. +rewrite Zpower_1_r; rewrite ppow_ppow; auto with zarith. +repeat rewrite pplus_pmult_dist_r || rewrite pplus_pmult_dist_l. +repeat rewrite <- pplus_assoc. +eq_tac; auto. +pattern 2 at 2; replace 2 with (1 + 1); auto with zarith. +rewrite ppow_add; auto with zarith; simpl. +rewrite pmult_1_r; auto. +rewrite Zmult_comm; rewrite ppow_ppow; simpl; auto with zarith. +repeat rewrite <- ppow_mult; auto with zarith. +rewrite (pmult_comm v w); rewrite w_mult_v. +rewrite ppow_1. +repeat rewrite tpower_1. +rewrite pplus_comm; repeat rewrite <- pplus_assoc; +rewrite pplus_comm; repeat rewrite <- pplus_assoc. +simpl; case (ppow (7, -4) (2 ^n)); simpl; intros z1 z2; eq_tac; auto with zarith. +Qed. + +Theorem sn_snd: forall n, snd (s n) = 0. +intros n; case n; simpl; auto. +intros p; pattern p; apply Pind; auto. +intros p1 H; rewrite Zpos_succ_morphism; unfold Zsucc. +rewrite sn_aux; auto with zarith. +generalize H; case (s (Zpos p1)); simpl. +intros x y H1; rewrite H1; auto with zarith. +Qed. + +Theorem sn: forall n, 0 <= n -> s (n+1) = (fst (s n) * fst (s n) -2, 0). +intros n Hn; rewrite sn_aux; generalize (sn_snd n); case (s n); auto. +intros x y H; simpl in H; rewrite H; simpl. +eq_tac; ring. +Qed. + +Theorem sn_w: forall n, 0 <= n -> ppow w (2 ^ (n + 1)) = pplus (pmult (s n) (ppow w (2 ^ n))) (- 1, 0). +intros n H; unfold s; simpl; rewrite Zpower_exp; auto with zarith. +assert (Hu: 0 <= 2 ^n); auto with zarith. +rewrite Zpower_1_r; rewrite ppow_ppow; auto with zarith. +repeat rewrite pplus_pmult_dist_r || rewrite pplus_pmult_dist_l. +pattern 2 at 2; replace 2 with (1 + 1); auto with zarith. +rewrite ppow_add; auto with zarith; simpl. +rewrite pmult_1_r; auto. +repeat rewrite <- ppow_mult; auto with zarith. +rewrite (pmult_comm v w); rewrite w_mult_v. +rewrite ppow_1; simpl. +simpl; case (ppow (7, 4) (2 ^n)); simpl; intros z1 z2; eq_tac; auto with zarith. +Qed. + +Theorem sn_w_next: forall n, 0 <= n -> ppow w (2 ^ (n + 1)) = pplus (pmult (s n) (ppow w (2 ^ n))) (- 1, 0). +intros n H; unfold s; simpl; rewrite Zpower_exp; auto with zarith. +assert (Hu: 0 <= 2 ^n); auto with zarith. +rewrite Zpower_1_r; rewrite ppow_ppow; auto with zarith. +repeat rewrite pplus_pmult_dist_r || rewrite pplus_pmult_dist_l. +pattern 2 at 2; replace 2 with (1 + 1); auto with zarith. +rewrite ppow_add; auto with zarith; simpl. +rewrite pmult_1_r; auto. +repeat rewrite <- ppow_mult; auto with zarith. +rewrite (pmult_comm v w); rewrite w_mult_v. +rewrite ppow_1; simpl. +simpl; case (ppow (7, 4) (2 ^n)); simpl; intros z1 z2; eq_tac; auto with zarith. +Qed. + +Section Lucas. + +Variable p: Z. + +(************************************** + Definition of the mersenne number + **************************************) + +Definition Mp := 2^p -1. + +Theorem mersenne_pos: 1 < p -> 1 < Mp. +intros H; unfold Mp; assert (2 < 2 ^p); auto with zarith. +apply Zlt_le_trans with (2^2); auto with zarith. +refine (refl_equal _). +apply Zpower_le_monotone; auto with zarith. +Qed. + +Hypothesis p_pos2: 2 < p. + +(************************************** + We suppose that the mersenne number divides s + **************************************) + +Hypothesis Mp_divide_sn: (Mp | fst (s (p - 2))). + +Variable q: Z. + +(************************************** + We take a divisor of Mp and shows that Mp <= q^2, hence Mp is prime + **************************************) + +Hypothesis q_divide_Mp: (q | Mp). + +Hypothesis q_pos2: 2 < q. + +Theorem q_pos: 1 < q. +apply Zlt_trans with (2 := q_pos2); auto with zarith. +Qed. + +(************************************** + The definition of the groups of inversible pairs + **************************************) + +Definition pgroup := PGroup q q_pos. + +Theorem w_in_pgroup: (In w pgroup.(FGroup.s)). +generalize q_pos; intros HM. +generalize q_pos2; intros HM2. +assert (H0: 0 < q); auto with zarith. +simpl; apply isupport_is_in; auto. +assert (zpmult q w (2, q - 1) = (1, 0)). +unfold zpmult, w, pmult, base; repeat (rewrite Zmult_1_r || rewrite Zmult_1_l). +eq_tac. +apply trans_equal with ((3 * q + 1) mod q). +eq_tac; auto with zarith. +rewrite Zplus_mod; auto. +rewrite Zmult_mod; auto. +rewrite Z_mod_same; auto with zarith. +rewrite Zmult_0_r; repeat rewrite Zmod_small; auto with zarith. +apply trans_equal with (2 * q mod q). +eq_tac; auto with zarith. +apply Zdivide_mod; auto with zarith; exists 2; auto with zarith. +apply is_inv_true with (2, q - 1); auto. +apply mL_in; auto with zarith. +intros; apply zpmult_1_l; auto with zarith. +intros; apply zpmult_1_r; auto with zarith. +rewrite zpmult_comm; auto. +apply mL_in; auto with zarith. +unfold w; apply mL_in; auto with zarith. +Qed. + +Theorem e_order_divide_order: (e_order P_dec w pgroup | g_order pgroup). +apply e_order_divide_g_order. +apply w_in_pgroup. +Qed. + +Theorem order_lt: g_order pgroup < q * q. +unfold g_order, pgroup, PGroup; simpl. +rewrite <- (Zabs_eq (q * q)); auto with zarith. +rewrite <- (inj_Zabs_nat (q * q)); auto with zarith. +rewrite <- mL_length; auto with zarith. +apply inj_lt; apply isupport_length_strict with (0, 0). +apply mL_ulist. +apply mL_in; auto with zarith. +intros a _; left; rewrite zpmult_0_l; auto with zarith. +intros; discriminate. +Qed. + +(************************************** + The power function zpow: a^n + **************************************) + +Definition zpow a := gpow a pgroup. + +(************************************** + Some properties of zpow + **************************************) + +Theorem zpow_def: + forall a b, In a pgroup.(FGroup.s) -> 0 <= b -> + zpow a b = ((fst (ppow a b)) mod q, (snd (ppow a b)) mod q). +generalize q_pos; intros HM. +generalize q_pos2; intros HM2. +assert (H0: 0 < q); auto with zarith. +intros a b Ha Hb; generalize Hb; pattern b; apply natlike_ind; auto. +intros _; repeat rewrite Zmod_small; auto with zarith. +rewrite ppow_0; simpl; auto with zarith. +unfold zpow; intros n1 H Rec _; unfold Zsucc. +rewrite gpow_add; auto with zarith. +rewrite ppow_add; simpl; try rewrite pmult_1_r; auto with zarith. +rewrite Rec; unfold zpmult; auto with zarith. +case (ppow a n1); case a; unfold pmult, fst, snd. +intros x y z t. +repeat (rewrite Zmult_1_r || rewrite Zmult_0_r || rewrite Zplus_0_r || rewrite Zplus_0_l); eq_tac. +repeat rewrite (fun u v => Zplus_mod (u * v)); auto. +eq_tac; try eq_tac; auto. +repeat rewrite (Zmult_mod z); auto with zarith. +repeat rewrite (fun u v => Zmult_mod (u * v)); auto. +eq_tac; try eq_tac; auto with zarith. +repeat rewrite (Zmult_mod base); auto with zarith. +eq_tac; try eq_tac; auto with zarith. +apply Zmod_mod; auto. +apply Zmod_mod; auto. +repeat rewrite (fun u v => Zplus_mod (u * v)); auto. +eq_tac; try eq_tac; auto. +repeat rewrite (Zmult_mod z); auto with zarith. +repeat rewrite (Zmult_mod t); auto with zarith. +Qed. + +Theorem zpow_w_n_minus_1: zpow w (2 ^ (p - 1)) = (-1 mod q, 0). +generalize q_pos; intros HM. +generalize q_pos2; intros HM2. +assert (H0: 0 < q); auto with zarith. +rewrite zpow_def. +replace (p - 1) with ((p - 2) + 1); auto with zarith. +rewrite sn_w; auto with zarith. +generalize Mp_divide_sn (sn_snd (p - 2)); case (s (p -2)); case (ppow w (2 ^ (p -2))). +unfold fst, snd; intros x y z t H1 H2; unfold pmult, pplus; subst. +repeat (rewrite Zmult_0_l || rewrite Zmult_0_r || rewrite Zplus_0_l || rewrite Zplus_0_r). +assert (H2: z mod q = 0). +case H1; intros q1 Hq1; rewrite Hq1. +case q_divide_Mp; intros q2 Hq2; rewrite Hq2. +rewrite Zmult_mod; auto. +rewrite (Zmult_mod q2); auto. +rewrite Z_mod_same; auto with zarith. +repeat (rewrite Zmult_0_r; rewrite (Zmod_small 0)); auto with zarith. +assert (H3: forall x, (z * x) mod q = 0). +intros y1; rewrite Zmult_mod; try rewrite H2; auto. +assert (H4: forall x y, (z * x + y) mod q = y mod q). +intros x1 y1; rewrite Zplus_mod; try rewrite H3; auto. +rewrite Zplus_0_l; apply Zmod_mod; auto. +eq_tac; auto. +apply w_in_pgroup. +apply Zlt_le_weak; apply Zpower_gt_0; auto with zarith. +Qed. + +Theorem zpow_w_n: zpow w (2 ^ p) = (1, 0). +generalize q_pos; intros HM. +generalize q_pos2; intros HM2. +assert (H0: 0 < q); auto with zarith. +replace p with ((p - 1) + 1); auto with zarith. +rewrite Zpower_exp; try rewrite Zpower_exp_1; auto with zarith. +unfold zpow; rewrite gpow_gpow; auto with zarith. +generalize zpow_w_n_minus_1; unfold zpow; intros H1; rewrite H1; clear H1. +simpl; unfold zpmult, pmult. +repeat (rewrite Zmult_0_l || rewrite Zmult_0_r || rewrite Zplus_0_l || + rewrite Zplus_0_r || rewrite Zmult_1_r). +eq_tac; auto. +pattern (-1 mod q) at 1; rewrite <- (Zmod_mod (-1) q); auto with zarith. +repeat rewrite <- Zmult_mod; auto. +rewrite Zmod_small; auto with zarith. +apply w_in_pgroup. +Qed. + +(************************************** + As e = (1, 0), the previous equation implies that the order of the group divide 2^p + **************************************) + +Theorem e_order_divide_pow: (e_order P_dec w pgroup | 2 ^ p). +generalize q_pos; intros HM. +generalize q_pos2; intros HM2. +assert (H0: 0 < q); auto with zarith. +apply e_order_divide_gpow. +apply w_in_pgroup. +apply Zlt_le_weak; apply Zpower_gt_0; auto with zarith. +exact zpow_w_n. +Qed. + +(************************************** + So it is less than equal + **************************************) + +Theorem e_order_le_pow : e_order P_dec w pgroup <= 2 ^ p. +apply Zdivide_le. +apply Zlt_le_weak; apply e_order_pos. +apply Zpower_gt_0; auto with zarith. +apply e_order_divide_pow. +Qed. + +(************************************** + So order(w) must be 2^q + **************************************) + +Theorem e_order_eq_pow: exists q, (e_order P_dec w pgroup) = 2 ^ q. +case (Zdivide_power_2 (e_order P_dec w pgroup) 2 p); auto with zarith. +apply Zlt_le_weak; apply e_order_pos. +apply prime_2. +apply e_order_divide_pow; auto. +intros x H; exists x; auto with zarith. +Qed. + +(************************************** + Buth this q can only be p otherwise it would contradict w^2^(p -1) = (-1, 0) + **************************************) + +Theorem e_order_eq_p: e_order P_dec w pgroup = 2 ^ p. +case (Zdivide_power_2 (e_order P_dec w pgroup) 2 p); auto with zarith. +apply Zlt_le_weak; apply e_order_pos. +apply prime_2. +apply e_order_divide_pow; auto. +intros p1 Hp1. +case (Zle_lt_or_eq p1 p); try (intro H1; subst; auto; fail). +case (Zle_or_lt p1 p); auto; intros H1. +absurd (2 ^ p1 <= 2 ^ p); auto with zarith. +apply Zlt_not_le; apply Zpower_lt_monotone; auto with zarith. +apply Zdivide_le. +apply Zlt_le_weak; apply Zpower_gt_0; auto with zarith. +apply Zpower_gt_0; auto with zarith. +rewrite <- Hp1; apply e_order_divide_pow. +intros H1. +assert (Hu: 0 <= p1). +generalize Hp1; case p1; simpl; auto with zarith. +intros p2 Hu; absurd (0 < e_order P_dec w pgroup). +rewrite Hu; auto with zarith. +apply e_order_pos. +absurd (zpow w (2 ^ (p - 1)) = (1, 0)). +rewrite zpow_w_n_minus_1. +intros H2; injection H2; clear H2; intros H2. +assert (H0: 0 < q); auto with zarith. +absurd (0 mod q = 0). +pattern 0 at 1; replace 0 with (-1 + 1); auto with zarith. +rewrite Zplus_mod; auto with zarith. +rewrite H2; rewrite (Zmod_small 1); auto with zarith. +rewrite Zmod_small; auto with zarith. +rewrite Zmod_small; auto with zarith. +unfold zpow; apply (gpow_pow _ _ w pgroup) with p1; auto with zarith. +apply w_in_pgroup. +rewrite <- Hp1. +apply (gpow_e_order_is_e _ P_dec _ w pgroup). +apply w_in_pgroup. +Qed. + +(************************************** + We have then the expected conclusion + **************************************) + +Theorem q_more_than_square: Mp < q * q. +unfold Mp. +assert (2 ^ p <= q * q); auto with zarith. +rewrite <- e_order_eq_p. +apply Zle_trans with (g_order pgroup). +apply Zdivide_le; auto with zarith. +apply Zlt_le_weak; apply e_order_pos; auto with zarith. +2: apply e_order_divide_order. +2: apply Zlt_le_weak; apply order_lt. +apply Zlt_le_trans with 2; auto with zarith. +replace 2 with (Z_of_nat (length ((1, 0)::w::nil))); auto. +unfold g_order; apply inj_le. +apply ulist_incl_length. +apply ulist_cons; simpl; auto. +unfold w; intros [H2 | H2]; try (case H2; fail); discriminate. +intro a; simpl; intros [H1 | [H1 | H1]]; subst. +assert (In (1, 0) (mL q)). +apply mL_in; auto with zarith. +apply isupport_is_in; auto. +apply is_inv_true with (1, 0); simpl; auto. +intros; apply zpmult_1_l; auto with zarith. +intros; apply zpmult_1_r; auto with zarith. +rewrite zpmult_1_r; auto with zarith. +rewrite zpmult_1_r; auto with zarith. +exact w_in_pgroup. +case H1. +Qed. + +End Lucas. + +(************************************** + We build the sequence in Z + **************************************) + +Definition SS p := + let n := Mp p in + match p - 2 with + Zpos p1 => iter_pos p1 _ (fun x => Zmodd (Zsquare x - 2) n) (Zmodd 4 n) + | _ => (Zmodd 4 n) + end. + +Theorem SS_aux_correct: + forall p z1 z2 n, 0 <= n -> 0 < z1 -> z2 = fst (s n) mod z1 -> + iter_pos p _ (fun x => Zmodd (Zsquare x - 2) z1) z2 = fst (s (n + Zpos p)) mod z1. +intros p; pattern p; apply Pind. +simpl. +intros z1 z2 n Hn H H1; rewrite sn; auto; rewrite H1; rewrite Zmodd_correct; rewrite Zsquare_correct; simpl. +unfold Zminus; rewrite Zplus_mod; auto. +rewrite (Zplus_mod (fst (s n) * fst (s n))); auto with zarith. +eq_tac; auto. +eq_tac; auto. +apply sym_equal; apply Zmult_mod; auto. +intros n Rec z1 z2 n1 Hn1 H1 H2. +rewrite Pplus_one_succ_l; rewrite iter_pos_plus. +rewrite Rec with (n0 := n1); auto. +replace (n1 + Zpos (1 + n)) with ((n1 + Zpos n) + 1); auto with zarith. +rewrite sn; simpl; try rewrite Zmodd_correct; try rewrite Zsquare_correct; simpl; auto with zarith. +unfold Zminus; rewrite Zplus_mod; auto. +unfold Zmodd. +rewrite (Zplus_mod (fst (s (n1 + Zpos n)) * fst (s (n1 + Zpos n)))); auto with zarith. +eq_tac; auto. +eq_tac; auto. +apply sym_equal; apply Zmult_mod; auto. +rewrite Zpos_plus_distr; auto with zarith. +Qed. + +Theorem SS_prop: forall n, 1 < n -> SS n = fst(s (n -2)) mod (Mp n). +intros n Hn; unfold SS. +cut (0 <= n - 2); auto with zarith. +case (n - 2). +intros _; rewrite Zmodd_correct; rewrite s0; auto. +intros p1 H2; rewrite SS_aux_correct with (n := 0); auto with zarith. +apply Zle_lt_trans with 1; try apply mersenne_pos; auto with zarith. +rewrite Zmodd_correct; rewrite s0; auto. +intros p1 H2; case H2; auto. +Qed. + +Theorem SS_prop_cor: forall p, 1 < p -> SS p = 0 -> (Mp p | fst(s (p -2))). +intros p H H1. +apply Zmod_divide. +generalize (mersenne_pos _ H); auto with zarith. +apply trans_equal with (2:= H1); apply sym_equal; apply SS_prop; auto. +Qed. + +Theorem LucasLehmer: forall p, 2 < p -> SS p = 0 -> prime (Mp p). +intros p H H1; case (prime_dec (Mp p)); auto; intros H2. +case Zdivide_div_prime_le_square with (2 := H2). +apply mersenne_pos; apply Zlt_trans with 2; auto with zarith. +intros q (H3, (H4, H5)). +contradict H5; apply Zlt_not_le. +apply q_more_than_square; auto. +apply SS_prop_cor; auto. +apply Zlt_trans with 2; auto with zarith. +case (Zle_lt_or_eq 2 q); auto. +apply prime_ge_2; auto. +intros H5; subst. +absurd (2 <= 1); auto with arith. +apply Zdivide_le; auto with zarith. +case H4; intros x Hx. +exists (2 ^ (p -1) - x). +rewrite Zmult_minus_distr_r; rewrite <- Hx; unfold Mp. +pattern 2 at 2; rewrite <- Zpower_1_r; rewrite <- Zpower_exp; auto with zarith. +replace (p - 1 + 1) with p; auto with zarith. +Qed. + +(************************************** + The test + **************************************) + +Definition lucas_test n := + if Z_lt_dec 2 n then if Z_eq_dec (SS n) 0 then true else false else false. + +Theorem LucasTest: forall n, lucas_test n = true -> prime (Mp n). +intros n; unfold lucas_test; case (Z_lt_dec 2 n); intros H1; try (intros; discriminate). +case (Z_eq_dec (SS n) 0); intros H2; try (intros; discriminate). +intros _; apply LucasLehmer; auto. +Qed. + +Theorem prime7: prime 7. +exact (LucasTest 3 (refl_equal _)). +Qed. + +Theorem prime31: prime 31. +exact (LucasTest 5 (refl_equal _)). +Qed. + +Theorem prime127: prime 127. +exact (LucasTest 7 (refl_equal _)). +Qed. + +Theorem prime8191: prime 8191. +exact (LucasTest 13 (refl_equal _)). +Qed. + +Theorem prime131071: prime 131071. +exact (LucasTest 17 (refl_equal _)). +Qed. + +Theorem prime524287: prime 524287. +exact (LucasTest 19 (refl_equal _)). +Qed. + -- cgit v1.2.3