diff options
Diffstat (limited to 'src/Reflection/InlineInterp.v')
-rw-r--r-- | src/Reflection/InlineInterp.v | 136 |
1 files changed, 0 insertions, 136 deletions
diff --git a/src/Reflection/InlineInterp.v b/src/Reflection/InlineInterp.v deleted file mode 100644 index cb9276d9a..000000000 --- a/src/Reflection/InlineInterp.v +++ /dev/null @@ -1,136 +0,0 @@ -(** * Inline: Remove some [Let] expressions *) -Require Import Crypto.Reflection.Syntax. -Require Import Crypto.Reflection.Wf. -Require Import Crypto.Reflection.Relations. -Require Import Crypto.Reflection.InlineWf. -Require Import Crypto.Reflection.InterpProofs. -Require Import Crypto.Reflection.Inline. -Require Import Crypto.Util.Sigma Crypto.Util.Prod. -Require Import Crypto.Util.Tactics.BreakMatch. -Require Import Crypto.Util.Tactics.SpecializeBy. - - -Local Open Scope ctype_scope. -Section language. - Context (base_type_code : Type). - Context (interp_base_type : base_type_code -> Type). - Context (op : flat_type base_type_code -> flat_type base_type_code -> Type). - Context (interp_op : forall src dst, op src dst -> interp_flat_type interp_base_type src -> interp_flat_type interp_base_type dst). - - Local Notation flat_type := (flat_type base_type_code). - Local Notation type := (type base_type_code). - Local Notation interp_type := (interp_type interp_base_type). - Local Notation interp_flat_type := (interp_flat_type interp_base_type). - Local Notation exprf := (@exprf base_type_code op). - Local Notation expr := (@expr base_type_code op). - Local Notation Expr := (@Expr base_type_code op). - Local Notation wff := (@wff base_type_code op). - Local Notation wf := (@wf base_type_code op). - - Local Hint Extern 1 => eapply interpf_SmartVarVarf. - - Local Ltac t_fin_step := - match goal with - | _ => reflexivity - | _ => progress simpl in * - | _ => progress unfold postprocess_for_const in * - | _ => progress intros - | _ => progress inversion_sigma - | _ => progress inversion_prod - | _ => solve [ intuition eauto ] - | _ => apply (f_equal (interp_op _ _ _)) - | _ => apply (f_equal2 (@pair _ _)) - | _ => progress specialize_by assumption - | _ => progress subst - | [ H : context[List.In _ (_ ++ _)] |- _ ] => setoid_rewrite List.in_app_iff in H - | [ H : _ = _ :> inline_directive _ |- _ ] - => apply (f_equal exprf_of_inline_directive) in H - | [ H : exprf_of_inline_directive _ = _ |- _ ] - => apply (f_equal (interpf interp_op)) in H - | [ H : @fst ?A ?B ?x = _, H' : context H'T[@fst ?A' ?B' ?x] |- _ ] - => let H'T' := context H'T[@fst A B x] in - progress change H'T' in H' - | [ H : @snd ?A ?B ?x = _, H' : context H'T[@snd ?A' ?B' ?x] |- _ ] - => let H'T' := context H'T[@snd A B x] in - progress change H'T' in H' - | [ H : or _ _ |- _ ] => destruct H - | _ => progress break_match - | _ => rewrite <- !surjective_pairing - | [ H : ?x = _, H' : context[?x] |- _ ] => rewrite H in H' - | [ H : _ |- _ ] => rewrite H; [] - | [ H : _, H' : _ |- _ ] => rewrite H in H' by fail - | [ H : _ |- _ ] => apply H; solve [ repeat t_fin_step ] - | [ H : _ |- _ ] => rewrite H; solve [ repeat t_fin_step ] - end. - Local Ltac t_fin := repeat t_fin_step. - - Lemma interpf_inline_const_genf postprocess G {t} e1 e2 - (wf : @wff _ _ G t e1 e2) - (Hpostprocess : forall t e, interpf interp_op (exprf_of_inline_directive (postprocess t e)) = interpf interp_op e) - (H : forall t x x', - List.In - (existT (fun t : base_type_code => (exprf (Tbase t) * interp_base_type t)%type) t - (x, x')) G - -> interpf interp_op x = x') - : interpf interp_op (inline_const_genf postprocess e1) = interpf interp_op e2. - Proof using Type. - clear -wf H Hpostprocess. - induction wf; t_fin. - Qed. - - Lemma interpf_postprocess_for_const is_const t e - : interpf interp_op (exprf_of_inline_directive (postprocess_for_const is_const t e)) = interpf interp_op e. - Proof using Type. - unfold postprocess_for_const; t_fin. - Qed. - - Local Hint Resolve interpf_postprocess_for_const. - - Lemma interpf_inline_constf is_const G {t} e1 e2 - (wf : @wff _ _ G t e1 e2) - (H : forall t x x', - List.In - (existT (fun t : base_type_code => (exprf (Tbase t) * interp_base_type t)%type) t - (x, x')) G - -> interpf interp_op x = x') - : interpf interp_op (inline_constf is_const e1) = interpf interp_op e2. - Proof using Type. eapply interpf_inline_const_genf; eauto. Qed. - - Local Hint Resolve interpf_inline_constf. - - Lemma interp_inline_const_gen postprocess {t} e1 e2 - (wf : @wf _ _ t e1 e2) - (Hpostprocess : forall t e, interpf interp_op (exprf_of_inline_directive (postprocess t e)) = interpf interp_op e) - : forall x, interp interp_op (inline_const_gen postprocess e1) x = interp interp_op e2 x. - Proof using Type. - destruct wf. - simpl in *; intro; eapply (interpf_inline_const_genf postprocess); eauto. - Qed. - - Local Hint Resolve interp_inline_const_gen. - - Lemma interp_inline_const is_const {t} e1 e2 - (wf : @wf _ _ t e1 e2) - : forall x, interp interp_op (inline_const is_const e1) x = interp interp_op e2 x. - Proof using Type. - eapply interp_inline_const_gen; eauto. - Qed. - - Lemma InterpInlineConstGen postprocess {t} (e : Expr t) - (wf : Wf e) - (Hpostprocess : forall t e, interpf interp_op (exprf_of_inline_directive (postprocess _ t e)) = interpf interp_op e) - : forall x, Interp interp_op (InlineConstGen postprocess e) x = Interp interp_op e x. - Proof using Type. - unfold Interp, InlineConst. - eapply (interp_inline_const_gen (postprocess _)); simpl; intuition. - Qed. - - Lemma InterpInlineConst is_const {t} (e : Expr t) - (wf : Wf e) - : forall x, Interp interp_op (InlineConst is_const e) x = Interp interp_op e x. - Proof using Type. - eapply InterpInlineConstGen; eauto. - Qed. -End language. - -Hint Rewrite @InterpInlineConst @interp_inline_const @interpf_inline_constf using solve [ eassumption | eauto with wf ] : reflective_interp. |