aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--optimizations.md4
1 files changed, 2 insertions, 2 deletions
diff --git a/optimizations.md b/optimizations.md
index 099dd670a..1d4e4145a 100644
--- a/optimizations.md
+++ b/optimizations.md
@@ -3,9 +3,9 @@
| Field Arithmetic | Unsaturated limbs/delayed carrying | Implemented | [ModularBaseSystemProofs.v#L347](https://github.com/mit-plv/fiat-crypto/blob/master/src/ModularArithmetic/ModularBaseSystemProofs.v#L347) | Represent field elements using more machine words than strictly necessary in order to delay carrying (for example, represent a 255-bit number using 51 bits per 64-bit word) |
| Field Arithmetic | Division-free Modular Reduction | Implemented | [PseudoMersenneBaseParamProofs.v#L41](https://github.com/mit-plv/fiat-crypto/blob/master/src/ModularArithmetic/PseudoMersenneBaseParamProofs.v#L41) | Reduce $x$ modulo $2^k-c$ by splitting $x$ into $a$ and $b$ such that $a + 2^k * b = x$, then returning $a + c * b$ |
| Field Arithmetic | Inverse square root | Not Implemented | n/a | Compute $\frac{1}{\sqrt{x}}$ rather than $\sqrt{x}$. Then, for example, in order to compute $\sqrt{\frac{x}{y}}$, compute $x * \frac{1}{\sqrt{xy}}$ rather than doing two expensive square root computations |
-| Field Arithmetic | Hex Exponentiation | Not Implemented | n/a | Use hexadecimal exponentiation for elliptic curve scalar multiplication |
| Field Arithmetic | Addition Chain Exponentiation | Implemented | [AdditionChainExponentiation.v#L53](https://github.com/mit-plv/fiat-crypto/blob/master/src/Util/AdditionChainExponentiation.v#L53) | https://en.wikipedia.org/wiki/Addition-chain_exponentiation |
-| Field Arithmetic | Precomputed Tables | Not Implemented | n/a | Precompute powers of base point |
+| Elliptic Curve Points | Precomputed Tables | Not Implemented | n/a | Precompute powers of base point |
+| Elliptic Curve Points | Hex Exponentiation | Not Implemented | n/a | Use hexadecimal exponentiation for elliptic curve scalar multiplication |
| Elliptic Curve Points | Extended Coordinates | Implemented | [ExtendedCoordinates.v#L258](https://github.com/mit-plv/fiat-crypto/blob/master/src/CompleteEdwardsCurve/ExtendedCoordinates.v#L258) | http://hyperelliptic.org/EFD/g1p/auto-edwards.html |
| Field Arithmetic | Karatsuba | Not Implemented | n/a | Use Karatsuba's trick for multiplication (mostly relevant for primes $> 400$ bits in size) |
| Elliptic Curve Points | Point Compression | Implemented | [PointEncodingPre.v#L313](https://github.com/mit-plv/fiat-crypto/blob/master/src/Encoding/PointEncodingPre.v#L313) and [PointEncodingPre.v#L412](https://github.com/mit-plv/fiat-crypto/blob/master/src/Encoding/PointEncodingPre.v#L412) | Instead of transmitting $(x,y)$ to transmit a point, transmit $y$ and a bit representing the sign of $x$. Decode $x$ by solving the curve equation for $x^2$, taking the square root, and picking the square root with the appropriate sign bit |