aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported/test/cxx11_tensor_broadcast_sycl.cpp
blob: 20f84b8e09bd72823ea872a3653ef1bb6fb97d30 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2016
// Mehdi Goli    Codeplay Software Ltd.
// Ralph Potter  Codeplay Software Ltd.
// Luke Iwanski  Codeplay Software Ltd.
// Contact: <eigen@codeplay.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#define EIGEN_TEST_NO_LONGDOUBLE
#define EIGEN_TEST_NO_COMPLEX

#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t
#define EIGEN_USE_SYCL

#include "main.h"
#include <unsupported/Eigen/CXX11/Tensor>

using Eigen::array;
using Eigen::SyclDevice;
using Eigen::Tensor;
using Eigen::TensorMap;

template <typename DataType, int DataLayout, typename IndexType>
static void test_broadcast_sycl_fixed(const Eigen::SyclDevice &sycl_device){

  // BROADCAST test:
  IndexType inDim1=2;
  IndexType inDim2=3;
  IndexType inDim3=5;
  IndexType inDim4=7;
  IndexType bDim1=2;
  IndexType bDim2=3;
  IndexType bDim3=1;
  IndexType bDim4=4;
  array<IndexType, 4> in_range   = {{inDim1, inDim2, inDim3, inDim4}};
  array<IndexType, 4> broadcasts = {{bDim1, bDim2, bDim3, bDim4}};
  array<IndexType, 4> out_range;  // = in_range * broadcasts
  for (size_t i = 0; i < out_range.size(); ++i)
    out_range[i] = in_range[i] * broadcasts[i];

  Tensor<DataType, 4, DataLayout, IndexType>  input(in_range);
  Tensor<DataType, 4, DataLayout, IndexType> out(out_range);

  for (size_t i = 0; i < in_range.size(); ++i)
    VERIFY_IS_EQUAL(out.dimension(i), out_range[i]);


  for (IndexType i = 0; i < input.size(); ++i)
    input(i) = static_cast<DataType>(i);

  DataType * gpu_in_data  = static_cast<DataType*>(sycl_device.allocate(input.dimensions().TotalSize()*sizeof(DataType)));
  DataType * gpu_out_data  = static_cast<DataType*>(sycl_device.allocate(out.dimensions().TotalSize()*sizeof(DataType)));

  TensorMap<TensorFixedSize<DataType, Sizes<2, 3, 5, 7>, DataLayout, IndexType>> gpu_in(gpu_in_data, in_range);
  TensorMap<Tensor<DataType, 4, DataLayout, IndexType>> gpu_out(gpu_out_data, out_range);
  sycl_device.memcpyHostToDevice(gpu_in_data, input.data(),(input.dimensions().TotalSize())*sizeof(DataType));
  gpu_out.device(sycl_device) = gpu_in.broadcast(broadcasts);
  sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data,(out.dimensions().TotalSize())*sizeof(DataType));

  for (IndexType i = 0; i < inDim1*bDim1; ++i) {
    for (IndexType j = 0; j < inDim2*bDim2; ++j) {
      for (IndexType k = 0; k < inDim3*bDim3; ++k) {
        for (IndexType l = 0; l < inDim4*bDim4; ++l) {
          VERIFY_IS_APPROX(input(i%2,j%3,k%5,l%7), out(i,j,k,l));
        }
      }
    }
  }
  printf("Broadcast Test with fixed size Passed\n");
  sycl_device.deallocate(gpu_in_data);
  sycl_device.deallocate(gpu_out_data);
}

template <typename DataType, int DataLayout, typename IndexType>
static void test_broadcast_sycl(const Eigen::SyclDevice &sycl_device){

  // BROADCAST test:
  IndexType inDim1=2;
  IndexType inDim2=3;
  IndexType inDim3=5;
  IndexType inDim4=7;
  IndexType bDim1=2;
  IndexType bDim2=3;
  IndexType bDim3=1;
  IndexType bDim4=4;
  array<IndexType, 4> in_range   = {{inDim1, inDim2, inDim3, inDim4}};
  array<IndexType, 4> broadcasts = {{bDim1, bDim2, bDim3, bDim4}};
  array<IndexType, 4> out_range;  // = in_range * broadcasts
  for (size_t i = 0; i < out_range.size(); ++i)
    out_range[i] = in_range[i] * broadcasts[i];

  Tensor<DataType, 4, DataLayout, IndexType>  input(in_range);
  Tensor<DataType, 4, DataLayout, IndexType> out(out_range);

  for (size_t i = 0; i < in_range.size(); ++i)
    VERIFY_IS_EQUAL(out.dimension(i), out_range[i]);


  for (IndexType i = 0; i < input.size(); ++i)
    input(i) = static_cast<DataType>(i);

  DataType * gpu_in_data  = static_cast<DataType*>(sycl_device.allocate(input.dimensions().TotalSize()*sizeof(DataType)));
  DataType * gpu_out_data  = static_cast<DataType*>(sycl_device.allocate(out.dimensions().TotalSize()*sizeof(DataType)));

  TensorMap<Tensor<DataType, 4, DataLayout, IndexType>>  gpu_in(gpu_in_data, in_range);
  TensorMap<Tensor<DataType, 4, DataLayout, IndexType>> gpu_out(gpu_out_data, out_range);
  sycl_device.memcpyHostToDevice(gpu_in_data, input.data(),(input.dimensions().TotalSize())*sizeof(DataType));
  gpu_out.device(sycl_device) = gpu_in.broadcast(broadcasts);
  sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data,(out.dimensions().TotalSize())*sizeof(DataType));

  for (IndexType i = 0; i < inDim1*bDim1; ++i) {
    for (IndexType j = 0; j < inDim2*bDim2; ++j) {
      for (IndexType k = 0; k < inDim3*bDim3; ++k) {
        for (IndexType l = 0; l < inDim4*bDim4; ++l) {
          VERIFY_IS_APPROX(input(i%inDim1,j%inDim2,k%inDim3,l%inDim4), out(i,j,k,l));
        }
      }
    }
  }
  printf("Broadcast Test Passed\n");
  sycl_device.deallocate(gpu_in_data);
  sycl_device.deallocate(gpu_out_data);
}

template<typename DataType> void sycl_broadcast_test_per_device(const cl::sycl::device& d){
  std::cout << "Running on " << d.template get_info<cl::sycl::info::device::name>() << std::endl;
  QueueInterface queueInterface(d);
  auto sycl_device = Eigen::SyclDevice(&queueInterface);
  test_broadcast_sycl<DataType, RowMajor, int64_t>(sycl_device);
  test_broadcast_sycl<DataType, ColMajor, int64_t>(sycl_device);
  test_broadcast_sycl_fixed<DataType, RowMajor, int64_t>(sycl_device);
  test_broadcast_sycl_fixed<DataType, ColMajor, int64_t>(sycl_device);
}

EIGEN_DECLARE_TEST(cxx11_tensor_broadcast_sycl) {
  for (const auto& device :Eigen::get_sycl_supported_devices()) {
    CALL_SUBTEST(sycl_broadcast_test_per_device<float>(device));
  }
}