aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported/test/FFT.cpp
blob: cc68f3718732aaaeab4bec09f63f487330cc8a91 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2009 Mark Borgerding mark a borgerding net
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#include "main.h"
#include <unsupported/Eigen/FFT>

using namespace std;

float norm(float x) {return x*x;}
double norm(double x) {return x*x;}
long double norm(long double x) {return x*x;}

template < typename T>
complex<long double>  promote(complex<T> x) { return complex<long double>(x.real(),x.imag()); }

complex<long double>  promote(float x) { return complex<long double>( x); }
complex<long double>  promote(double x) { return complex<long double>( x); }
complex<long double>  promote(long double x) { return complex<long double>( x); }
    

    template <typename VectorType1,typename VectorType2>
    long double fft_rmse( const VectorType1 & fftbuf,const VectorType2 & timebuf)
    {
        long double totalpower=0;
        long double difpower=0;
        cerr <<"idx\ttruth\t\tvalue\t|dif|=\n";
        for (size_t k0=0;k0<size_t(fftbuf.size());++k0) {
            complex<long double> acc = 0;
            long double phinc = -2.*k0* M_PIl / timebuf.size();
            for (size_t k1=0;k1<size_t(timebuf.size());++k1) {
                acc +=  promote( timebuf[k1] ) * exp( complex<long double>(0,k1*phinc) );
            }
            totalpower += norm(acc);
            complex<long double> x = promote(fftbuf[k0]); 
            complex<long double> dif = acc - x;
            difpower += norm(dif);
            cerr << k0 << "\t" << acc << "\t" <<  x << "\t" << sqrt(norm(dif)) << endl;
        }
        cerr << "rmse:" << sqrt(difpower/totalpower) << endl;
        return sqrt(difpower/totalpower);
    }

    template <typename VectorType1,typename VectorType2>
    long double dif_rmse( const VectorType1& buf1,const VectorType2& buf2)
    {
        long double totalpower=0;
        long double difpower=0;
        size_t n = min( buf1.size(),buf2.size() );
        for (size_t k=0;k<n;++k) {
            totalpower += (norm( buf1[k] ) + norm(buf2[k]) )/2.;
            difpower += norm(buf1[k] - buf2[k]);
        }
        return sqrt(difpower/totalpower);
    }

enum { StdVectorContainer, EigenVectorContainer };

template<int Container, typename Scalar> struct VectorType;

template<typename Scalar> struct VectorType<StdVectorContainer,Scalar>
{
  typedef vector<Scalar> type;
};

template<typename Scalar> struct VectorType<EigenVectorContainer,Scalar>
{
  typedef Matrix<Scalar,Dynamic,1> type;
};

template <int Container, typename T>
void test_scalar_generic(int nfft)
{
    typedef typename FFT<T>::Complex Complex;
    typedef typename FFT<T>::Scalar Scalar;
    typedef typename VectorType<Container,Scalar>::type ScalarVector;
    typedef typename VectorType<Container,Complex>::type ComplexVector;

    FFT<T> fft;
    ScalarVector inbuf(nfft);
    ComplexVector outbuf;
    for (int k=0;k<nfft;++k)
        inbuf[k]= (T)(rand()/(double)RAND_MAX - .5);
    fft.fwd( outbuf,inbuf);
    VERIFY( fft_rmse(outbuf,inbuf) < test_precision<T>()  );// gross check

    ScalarVector buf3;
    fft.inv( buf3 , outbuf);
    VERIFY( dif_rmse(inbuf,buf3) < test_precision<T>()  );// gross check
}

template <typename T>
void test_scalar(int nfft)
{
  test_scalar_generic<StdVectorContainer,T>(nfft);
  test_scalar_generic<EigenVectorContainer,T>(nfft);
}

template <int Container, typename T>
void test_complex_generic(int nfft)
{
    typedef typename FFT<T>::Complex Complex;
    typedef typename VectorType<Container,Complex>::type ComplexVector;

    FFT<T> fft;

    ComplexVector inbuf(nfft);
    ComplexVector outbuf;
    ComplexVector buf3;
    for (int k=0;k<nfft;++k)
        inbuf[k]= Complex( (T)(rand()/(double)RAND_MAX - .5), (T)(rand()/(double)RAND_MAX - .5) );
    fft.fwd( outbuf , inbuf);

    VERIFY( fft_rmse(outbuf,inbuf) < test_precision<T>()  );// gross check

    fft.inv( buf3 , outbuf);

    VERIFY( dif_rmse(inbuf,buf3) < test_precision<T>()  );// gross check
}

template <typename T>
void test_complex(int nfft)
{
  test_complex_generic<StdVectorContainer,T>(nfft);
  test_complex_generic<EigenVectorContainer,T>(nfft);
}

void test_FFT()
{

  CALL_SUBTEST( test_complex<float>(32) );
  CALL_SUBTEST( test_complex<double>(32) );
  CALL_SUBTEST( test_complex<long double>(32) );
  
  CALL_SUBTEST( test_complex<float>(256) );
  CALL_SUBTEST( test_complex<double>(256) );
  CALL_SUBTEST( test_complex<long double>(256) );
  
  CALL_SUBTEST( test_complex<float>(3*8) );
  CALL_SUBTEST( test_complex<double>(3*8) );
  CALL_SUBTEST( test_complex<long double>(3*8) );
  
  CALL_SUBTEST( test_complex<float>(5*32) );
  CALL_SUBTEST( test_complex<double>(5*32) );
  CALL_SUBTEST( test_complex<long double>(5*32) );
  
  CALL_SUBTEST( test_complex<float>(2*3*4) );
  CALL_SUBTEST( test_complex<double>(2*3*4) );
  CALL_SUBTEST( test_complex<long double>(2*3*4) );
  
  CALL_SUBTEST( test_complex<float>(2*3*4*5) );
  CALL_SUBTEST( test_complex<double>(2*3*4*5) );
  CALL_SUBTEST( test_complex<long double>(2*3*4*5) );
  
  CALL_SUBTEST( test_complex<float>(2*3*4*5*7) );
  CALL_SUBTEST( test_complex<double>(2*3*4*5*7) );
  CALL_SUBTEST( test_complex<long double>(2*3*4*5*7) );



  CALL_SUBTEST( test_scalar<float>(32) );
  CALL_SUBTEST( test_scalar<double>(32) );
  CALL_SUBTEST( test_scalar<long double>(32) );
  
  CALL_SUBTEST( test_scalar<float>(45) );
  CALL_SUBTEST( test_scalar<double>(45) );
  CALL_SUBTEST( test_scalar<long double>(45) );
  
  CALL_SUBTEST( test_scalar<float>(50) );
  CALL_SUBTEST( test_scalar<double>(50) );
  CALL_SUBTEST( test_scalar<long double>(50) );
  
  CALL_SUBTEST( test_scalar<float>(256) );
  CALL_SUBTEST( test_scalar<double>(256) );
  CALL_SUBTEST( test_scalar<long double>(256) );
  
  CALL_SUBTEST( test_scalar<float>(2*3*4*5*7) );
  CALL_SUBTEST( test_scalar<double>(2*3*4*5*7) );
  CALL_SUBTEST( test_scalar<long double>(2*3*4*5*7) );
}