aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported/Eigen/src/NumericalDiff/NumericalDiff.h
blob: dcd435864ff35b857728bbb0e9c6935854eb0d47 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Thomas Capricelli <orzel@freehackers.org>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_NUMERICAL_DIFF_H
#define EIGEN_NUMERICAL_DIFF_H

namespace Eigen
{

enum NumericalDiffMode {
    Forward,
    Central
};


template<typename Functor, NumericalDiffMode mode=Forward> class NumericalDiff : public Functor
{
public:
    typedef typename Functor::Scalar Scalar;
    typedef typename Functor::InputType InputType;
    typedef typename Functor::ValueType ValueType;
    typedef typename Functor::JacobianType JacobianType;

    NumericalDiff(Scalar _epsfcn=0.) : Functor(), epsfcn(_epsfcn) {}
    NumericalDiff(const Functor& f, Scalar _epsfcn=0.) : Functor(f), epsfcn(_epsfcn) {}

    // forward constructors
    template<typename T0>
        NumericalDiff(const T0& a0) : Functor(a0), epsfcn(0) {}
    template<typename T0, typename T1>
        NumericalDiff(const T0& a0, const T1& a1) : Functor(a0, a1), epsfcn(0) {}
    template<typename T0, typename T1, typename T2>
        NumericalDiff(const T0& a0, const T1& a1, const T1& a2) : Functor(a0, a1, a2), epsfcn(0) {}

    enum {
        InputsAtCompileTime = Functor::InputsAtCompileTime,
        ValuesAtCompileTime = Functor::ValuesAtCompileTime
    };

    /**
      * return the number of evaluation of functor
     */
    int df(const InputType& _x, JacobianType &jac) const
    {
        /* Local variables */
        Scalar h;
        int nfev=0;
        const int n = _x.size();
        const Scalar eps = ei_sqrt((std::max(epsfcn,epsilon<Scalar>() )));
        ValueType val1, val2;
        InputType x = _x;
        // TODO : we should do this only if the size is not already known
        val1.resize(Functor::values());
        val2.resize(Functor::values());

        // initialization
        switch(mode) {
            case Forward:
                // compute f(x)
                Functor::operator()(x, val1); nfev++;
                break;
            case Central:
                // do nothing
                break;
            default:
                assert(false);
        };

        // Function Body
        for (int j = 0; j < n; ++j) {
            h = eps * ei_abs(x[j]);
            if (h == 0.) {
                h = eps;
            }
            switch(mode) {
                case Forward:
                    x[j] += h;
                    Functor::operator()(x, val2);
                    nfev++;
                    x[j] = _x[j];
                    jac.col(j) = (val2-val1)/h;
                    break;
                case Central:
                    x[j] += h;
                    Functor::operator()(x, val2); nfev++;
                    x[j] -= 2*h;
                    Functor::operator()(x, val1); nfev++;
                    x[j] = _x[j];
                    jac.col(j) = (val2-val1)/(2*h);
                    break;
                default:
                    assert(false);
            };
        }
        return nfev;
    }
private:
    Scalar epsfcn;
};

} // namespace

#endif // EIGEN_NUMERICAL_DIFF_H