1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2016 Dmitry Vyukov <dvyukov@google.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_CXX11_THREADPOOL_EVENTCOUNT_H_
#define EIGEN_CXX11_THREADPOOL_EVENTCOUNT_H_
namespace Eigen {
// EventCount allows to wait for arbitrary predicates in non-blocking
// algorithms. Think of condition variable, but wait predicate does not need to
// be protected by a mutex. Usage:
// Waiting thread does:
//
// if (predicate)
// return act();
// EventCount::Waiter& w = waiters[my_index];
// ec.Prewait(&w);
// if (predicate) {
// ec.CancelWait(&w);
// return act();
// }
// ec.CommitWait(&w);
//
// Notifying thread does:
//
// predicate = true;
// ec.Notify(true);
//
// Notify is cheap if there are no waiting threads. Prewait/CommitWait are not
// cheap, but they are executed only if the preceding predicate check has
// failed.
//
// Algorithm outline:
// There are two main variables: predicate (managed by user) and state_.
// Operation closely resembles Dekker mutual algorithm:
// https://en.wikipedia.org/wiki/Dekker%27s_algorithm
// Waiting thread sets state_ then checks predicate, Notifying thread sets
// predicate then checks state_. Due to seq_cst fences in between these
// operations it is guaranteed than either waiter will see predicate change
// and won't block, or notifying thread will see state_ change and will unblock
// the waiter, or both. But it can't happen that both threads don't see each
// other changes, which would lead to deadlock.
class EventCount {
public:
class Waiter;
EventCount(MaxSizeVector<Waiter>& waiters)
: state_(kStackMask), waiters_(waiters) {
eigen_plain_assert(waiters.size() < (1 << kWaiterBits) - 1);
}
~EventCount() {
// Ensure there are no waiters.
eigen_plain_assert(state_.load() == kStackMask);
}
// Prewait prepares for waiting.
// After calling Prewait, the thread must re-check the wait predicate
// and then call either CancelWait or CommitWait.
void Prewait() {
uint64_t state = state_.load(std::memory_order_relaxed);
for (;;) {
CheckState(state);
uint64_t newstate = state + kWaiterInc;
CheckState(newstate);
if (state_.compare_exchange_weak(state, newstate,
std::memory_order_seq_cst))
return;
}
}
// CommitWait commits waiting after Prewait.
void CommitWait(Waiter* w) {
eigen_plain_assert((w->epoch & ~kEpochMask) == 0);
w->state = Waiter::kNotSignaled;
const uint64_t me = (w - &waiters_[0]) | w->epoch;
uint64_t state = state_.load(std::memory_order_seq_cst);
for (;;) {
CheckState(state, true);
uint64_t newstate;
if ((state & kSignalMask) != 0) {
// Consume the signal and return immidiately.
newstate = state - kWaiterInc - kSignalInc;
} else {
// Remove this thread from pre-wait counter and add to the waiter stack.
newstate = ((state & kWaiterMask) - kWaiterInc) | me;
w->next.store(state & (kStackMask | kEpochMask),
std::memory_order_relaxed);
}
CheckState(newstate);
if (state_.compare_exchange_weak(state, newstate,
std::memory_order_acq_rel)) {
if ((state & kSignalMask) == 0) {
w->epoch += kEpochInc;
Park(w);
}
return;
}
}
}
// CancelWait cancels effects of the previous Prewait call.
void CancelWait() {
uint64_t state = state_.load(std::memory_order_relaxed);
for (;;) {
CheckState(state, true);
uint64_t newstate = state - kWaiterInc;
// We don't know if the thread was also notified or not,
// so we should not consume a signal unconditionaly.
// Only if number of waiters is equal to number of signals,
// we know that the thread was notified and we must take away the signal.
if (((state & kWaiterMask) >> kWaiterShift) ==
((state & kSignalMask) >> kSignalShift))
newstate -= kSignalInc;
CheckState(newstate);
if (state_.compare_exchange_weak(state, newstate,
std::memory_order_acq_rel))
return;
}
}
// Notify wakes one or all waiting threads.
// Must be called after changing the associated wait predicate.
void Notify(bool notifyAll) {
std::atomic_thread_fence(std::memory_order_seq_cst);
uint64_t state = state_.load(std::memory_order_acquire);
for (;;) {
CheckState(state);
const uint64_t waiters = (state & kWaiterMask) >> kWaiterShift;
const uint64_t signals = (state & kSignalMask) >> kSignalShift;
// Easy case: no waiters.
if ((state & kStackMask) == kStackMask && waiters == signals) return;
uint64_t newstate;
if (notifyAll) {
// Empty wait stack and set signal to number of pre-wait threads.
newstate =
(state & kWaiterMask) | (waiters << kSignalShift) | kStackMask;
} else if (signals < waiters) {
// There is a thread in pre-wait state, unblock it.
newstate = state + kSignalInc;
} else {
// Pop a waiter from list and unpark it.
Waiter* w = &waiters_[state & kStackMask];
uint64_t next = w->next.load(std::memory_order_relaxed);
newstate = (state & (kWaiterMask | kSignalMask)) | next;
}
CheckState(newstate);
if (state_.compare_exchange_weak(state, newstate,
std::memory_order_acq_rel)) {
if (!notifyAll && (signals < waiters))
return; // unblocked pre-wait thread
if ((state & kStackMask) == kStackMask) return;
Waiter* w = &waiters_[state & kStackMask];
if (!notifyAll) w->next.store(kStackMask, std::memory_order_relaxed);
Unpark(w);
return;
}
}
}
class Waiter {
friend class EventCount;
// Align to 128 byte boundary to prevent false sharing with other Waiter
// objects in the same vector.
EIGEN_ALIGN_TO_BOUNDARY(128) std::atomic<uint64_t> next;
std::mutex mu;
std::condition_variable cv;
uint64_t epoch = 0;
unsigned state = kNotSignaled;
enum {
kNotSignaled,
kWaiting,
kSignaled,
};
};
private:
// State_ layout:
// - low kWaiterBits is a stack of waiters committed wait
// (indexes in waiters_ array are used as stack elements,
// kStackMask means empty stack).
// - next kWaiterBits is count of waiters in prewait state.
// - next kWaiterBits is count of pending signals.
// - remaining bits are ABA counter for the stack.
// (stored in Waiter node and incremented on push).
static const uint64_t kWaiterBits = 14;
static const uint64_t kStackMask = (1ull << kWaiterBits) - 1;
static const uint64_t kWaiterShift = kWaiterBits;
static const uint64_t kWaiterMask = ((1ull << kWaiterBits) - 1)
<< kWaiterShift;
static const uint64_t kWaiterInc = 1ull << kWaiterShift;
static const uint64_t kSignalShift = 2 * kWaiterBits;
static const uint64_t kSignalMask = ((1ull << kWaiterBits) - 1)
<< kSignalShift;
static const uint64_t kSignalInc = 1ull << kSignalShift;
static const uint64_t kEpochShift = 3 * kWaiterBits;
static const uint64_t kEpochBits = 64 - kEpochShift;
static const uint64_t kEpochMask = ((1ull << kEpochBits) - 1) << kEpochShift;
static const uint64_t kEpochInc = 1ull << kEpochShift;
std::atomic<uint64_t> state_;
MaxSizeVector<Waiter>& waiters_;
static void CheckState(uint64_t state, bool waiter = false) {
static_assert(kEpochBits >= 20, "not enough bits to prevent ABA problem");
const uint64_t waiters = (state & kWaiterMask) >> kWaiterShift;
const uint64_t signals = (state & kSignalMask) >> kSignalShift;
eigen_plain_assert(waiters >= signals);
eigen_plain_assert(waiters < (1 << kWaiterBits) - 1);
eigen_plain_assert(!waiter || waiters > 0);
(void)waiters;
(void)signals;
}
void Park(Waiter* w) {
std::unique_lock<std::mutex> lock(w->mu);
while (w->state != Waiter::kSignaled) {
w->state = Waiter::kWaiting;
w->cv.wait(lock);
}
}
void Unpark(Waiter* w) {
for (Waiter* next; w; w = next) {
uint64_t wnext = w->next.load(std::memory_order_relaxed) & kStackMask;
next = wnext == kStackMask ? nullptr : &waiters_[wnext];
unsigned state;
{
std::unique_lock<std::mutex> lock(w->mu);
state = w->state;
w->state = Waiter::kSignaled;
}
// Avoid notifying if it wasn't waiting.
if (state == Waiter::kWaiting) w->cv.notify_one();
}
}
EventCount(const EventCount&) = delete;
void operator=(const EventCount&) = delete;
};
} // namespace Eigen
#endif // EIGEN_CXX11_THREADPOOL_EVENTCOUNT_H_
|