1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Mehdi Goli Codeplay Software Ltd.
// Ralph Potter Codeplay Software Ltd.
// Luke Iwanski Codeplay Software Ltd.
// Cummins Chris PhD student at The University of Edinburgh.
// Contact: <eigen@codeplay.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
/*****************************************************************
* TensorSyclRun.h
*
* \brief:
* Schedule_kernel invoke an specialised version of kernel struct. The
* specialisation is based on the data dimension in sycl buffer
*
*****************************************************************/
#ifndef UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSORSYCL_SYCLRUN_HPP
#define UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSORSYCL_SYCLRUN_HPP
namespace Eigen {
namespace TensorSycl {
template<typename Expr, typename FunctorExpr, typename TupleType > struct ExecExprFunctorKernel{
typedef typename internal::createPlaceHolderExpression<Expr>::Type PlaceHolderExpr;
typedef typename Expr::Index Index;
FunctorExpr functors;
TupleType tuple_of_accessors;
Index range;
ExecExprFunctorKernel(Index range_, FunctorExpr functors_, TupleType tuple_of_accessors_)
: functors(functors_), tuple_of_accessors(tuple_of_accessors_), range(range_){}
void operator()(cl::sycl::nd_item<1> itemID) {
typedef typename internal::ConvertToDeviceExpression<Expr>::Type DevExpr;
auto device_expr =internal::createDeviceExpression<DevExpr, PlaceHolderExpr>(functors, tuple_of_accessors);
auto device_evaluator = Eigen::TensorEvaluator<decltype(device_expr.expr), Eigen::SyclKernelDevice>(device_expr.expr, Eigen::SyclKernelDevice());
typename DevExpr::Index gId = static_cast<typename DevExpr::Index>(itemID.get_global_linear_id());
if (gId < range)
device_evaluator.evalScalar(gId);
}
};
/// The run function in tensor sycl convert the expression tree to a buffer
/// based expression tree;
/// creates the expression tree for the device with accessor to buffers;
/// construct the kernel and submit it to the sycl queue.
/// std::array does not have TotalSize. So I have to get the size through template specialisation.
template<typename , typename Dimensions> struct DimensionSize{
static auto getDimSize(const Dimensions& dim)->decltype(dim.TotalSize()){
return dim.TotalSize();
}
};
#define DIMSIZEMACRO(CVQual)\
template<typename Index, size_t NumDims> struct DimensionSize<Index, CVQual std::array<Index, NumDims>>{\
static inline Index getDimSize(const std::array<Index, NumDims>& dim){\
return (NumDims == 0) ? 1 : ::Eigen::internal::array_prod(dim);\
}\
};
DIMSIZEMACRO(const)
DIMSIZEMACRO()
#undef DIMSIZEMACRO
template <typename Expr, typename Dev>
void run(Expr &expr, Dev &dev) {
Eigen::TensorEvaluator<Expr, Dev> evaluator(expr, dev);
const bool needs_assign = evaluator.evalSubExprsIfNeeded(NULL);
if (needs_assign) {
typedef Eigen::TensorSycl::internal::FunctorExtractor<Eigen::TensorEvaluator<Expr, Dev> > FunctorExpr;
FunctorExpr functors = internal::extractFunctors(evaluator);
dev.sycl_queue().submit([&](cl::sycl::handler &cgh) {
// create a tuple of accessors from Evaluator
typedef decltype(internal::createTupleOfAccessors<Eigen::TensorEvaluator<Expr, Dev> >(cgh, evaluator)) TupleType;
TupleType tuple_of_accessors = internal::createTupleOfAccessors<Eigen::TensorEvaluator<Expr, Dev> >(cgh, evaluator);
typename Expr::Index range, GRange, tileSize;
typename Expr::Index total_size = static_cast<typename Expr::Index>(DimensionSize<typename Expr::Index, typename Eigen::TensorEvaluator<Expr, Dev>::Dimensions>::getDimSize(evaluator.dimensions()));
dev.parallel_for_setup(total_size, tileSize, range, GRange);
cgh.parallel_for(cl::sycl::nd_range<1>(cl::sycl::range<1>(GRange), cl::sycl::range<1>(tileSize)),
ExecExprFunctorKernel<Expr,FunctorExpr,TupleType>(range
, functors, tuple_of_accessors
));
});
dev.asynchronousExec();
}
evaluator.cleanup();
}
} // namespace TensorSycl
} // namespace Eigen
#endif // UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSORSYCL_SYCLRUN_HPP
|