aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported/Eigen/CXX11/src/Tensor/TensorInflation.h
blob: 6147fbdf1b40da43a511d94ca6abeaf2c201ba81 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2015 Ke Yang <yangke@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_CXX11_TENSOR_TENSOR_INFLATION_H
#define EIGEN_CXX11_TENSOR_TENSOR_INFLATION_H

namespace Eigen {

/** \class TensorInflation
  * \ingroup CXX11_Tensor_Module
  *
  * \brief Tensor inflation class.
  *
  *
  */
namespace internal {
template<typename Strides, typename XprType>
struct traits<TensorInflationOp<Strides, XprType> > : public traits<XprType>
{
  typedef typename XprType::Scalar Scalar;
  typedef traits<XprType> XprTraits;
  typedef typename XprTraits::StorageKind StorageKind;
  typedef typename XprTraits::Index Index;
  typedef typename XprType::Nested Nested;
  typedef typename remove_reference<Nested>::type _Nested;
  static const int NumDimensions = XprTraits::NumDimensions;
  static const int Layout = XprTraits::Layout;
  typedef typename XprTraits::PointerType PointerType;
};

template<typename Strides, typename XprType>
struct eval<TensorInflationOp<Strides, XprType>, Eigen::Dense>
{
  typedef const TensorInflationOp<Strides, XprType>& type;
};

template<typename Strides, typename XprType>
struct nested<TensorInflationOp<Strides, XprType>, 1, typename eval<TensorInflationOp<Strides, XprType> >::type>
{
  typedef TensorInflationOp<Strides, XprType> type;
};

}  // end namespace internal

template<typename Strides, typename XprType>
class TensorInflationOp : public TensorBase<TensorInflationOp<Strides, XprType>, ReadOnlyAccessors>
{
  public:
  typedef typename Eigen::internal::traits<TensorInflationOp>::Scalar Scalar;
  typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
  typedef typename XprType::CoeffReturnType CoeffReturnType;
  typedef typename Eigen::internal::nested<TensorInflationOp>::type Nested;
  typedef typename Eigen::internal::traits<TensorInflationOp>::StorageKind StorageKind;
  typedef typename Eigen::internal::traits<TensorInflationOp>::Index Index;

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorInflationOp(const XprType& expr, const Strides& strides)
      : m_xpr(expr), m_strides(strides) {}

    EIGEN_DEVICE_FUNC
    const Strides& strides() const { return m_strides; }

    EIGEN_DEVICE_FUNC
    const typename internal::remove_all<typename XprType::Nested>::type&
    expression() const { return m_xpr; }

  protected:
    typename XprType::Nested m_xpr;
    const Strides m_strides;
};

// Eval as rvalue
template<typename Strides, typename ArgType, typename Device>
struct TensorEvaluator<const TensorInflationOp<Strides, ArgType>, Device>
{
  typedef TensorInflationOp<Strides, ArgType> XprType;
  typedef typename XprType::Index Index;
  static const int NumDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value;
  typedef DSizes<Index, NumDims> Dimensions;
  typedef typename XprType::Scalar Scalar;
  typedef typename XprType::CoeffReturnType CoeffReturnType;
  typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
  static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;

  enum {
    IsAligned = /*TensorEvaluator<ArgType, Device>::IsAligned*/ false,
    PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
    BlockAccess = false,
    Layout = TensorEvaluator<ArgType, Device>::Layout,
    CoordAccess = false,  // to be implemented
    RawAccess = false
  };

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
      : m_impl(op.expression(), device), m_strides(op.strides())
  {
    m_dimensions = m_impl.dimensions();
    // Expand each dimension to the inflated dimension.
    for (int i = 0; i < NumDims; ++i) {
      m_dimensions[i] = (m_dimensions[i] - 1) * op.strides()[i] + 1;
    }

    // Remember the strides for fast division.
    for (int i = 0; i < NumDims; ++i) {
      m_fastStrides[i] = internal::TensorIntDivisor<Index>(m_strides[i]);
    }

    const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
    if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
      m_outputStrides[0] = 1;
      m_inputStrides[0] = 1;
      for (int i = 1; i < NumDims; ++i) {
        m_outputStrides[i] = m_outputStrides[i-1] * m_dimensions[i-1];
        m_inputStrides[i] = m_inputStrides[i-1] * input_dims[i-1];
      }
    } else {  // RowMajor
      m_outputStrides[NumDims-1] = 1;
      m_inputStrides[NumDims-1] = 1;
      for (int i = NumDims - 2; i >= 0; --i) {
        m_outputStrides[i] = m_outputStrides[i+1] * m_dimensions[i+1];
        m_inputStrides[i] = m_inputStrides[i+1] * input_dims[i+1];
      }
    }
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* /*data*/) {
    m_impl.evalSubExprsIfNeeded(NULL);
    return true;
  }
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
    m_impl.cleanup();
  }

  // Computes the input index given the output index. Returns true if the output
  // index doesn't fall into a hole.
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool getInputIndex(Index index, Index* inputIndex) const
  {
    eigen_assert(index < dimensions().TotalSize());
    *inputIndex = 0;
    if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
      for (int i = NumDims - 1; i > 0; --i) {
        const Index idx = index / m_outputStrides[i];
        if (idx != idx / m_fastStrides[i] * m_strides[i]) {
          return false;
        }
        *inputIndex += idx / m_strides[i] * m_inputStrides[i];
        index -= idx * m_outputStrides[i];
      }
      if (index != index / m_fastStrides[0] * m_strides[0]) {
        return false;
      }
      *inputIndex += index / m_strides[0];
      return true;
    } else {
      for (int i = 0; i < NumDims - 1; ++i) {
        const Index idx = index / m_outputStrides[i];
        if (idx != idx / m_fastStrides[i] * m_strides[i]) {
          return false;
        }
        *inputIndex += idx / m_strides[i] * m_inputStrides[i];
        index -= idx * m_outputStrides[i];
      }
      if (index != index / m_fastStrides[NumDims-1] * m_strides[NumDims-1]) {
        return false;
      }
      *inputIndex += index / m_strides[NumDims - 1];
    }
    return true;
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
  {
    Index inputIndex = 0;
    if (getInputIndex(index, &inputIndex)) {
     return m_impl.coeff(inputIndex);
    } else {
     return Scalar(0);
    }
  }

  // TODO(yangke): optimize this function so that we can detect and produce
  // all-zero packets
  template<int LoadMode>
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
  {
    EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
    eigen_assert(index+PacketSize-1 < dimensions().TotalSize());

    EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize];
    for (int i = 0; i < PacketSize; ++i) {
      values[i] = coeff(index+i);
    }
    PacketReturnType rslt = internal::pload<PacketReturnType>(values);
    return rslt;
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
    const double compute_cost = NumDims * (3 * TensorOpCost::DivCost<Index>() +
                                           3 * TensorOpCost::MulCost<Index>() +
                                           2 * TensorOpCost::AddCost<Index>());
    const double input_size = m_impl.dimensions().TotalSize();
    const double output_size = m_dimensions.TotalSize();
    if (output_size == 0)
      return TensorOpCost();
    return m_impl.costPerCoeff(vectorized) +
           TensorOpCost(sizeof(CoeffReturnType) * input_size / output_size, 0,
                        compute_cost, vectorized, PacketSize);
  }

  EIGEN_DEVICE_FUNC typename Eigen::internal::traits<XprType>::PointerType data() const { return NULL; }

#ifdef EIGEN_USE_SYCL
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorEvaluator<ArgType, Device>& impl() const { return m_impl; }
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Strides& functor() const { return m_strides; }
#endif

 protected:
  Dimensions m_dimensions;
  array<Index, NumDims> m_outputStrides;
  array<Index, NumDims> m_inputStrides;
  TensorEvaluator<ArgType, Device> m_impl;
  const Strides m_strides;
  array<internal::TensorIntDivisor<Index>, NumDims> m_fastStrides;
};

} // end namespace Eigen

#endif // EIGEN_CXX11_TENSOR_TENSOR_INFLATION_H