1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_UMFPACKSUPPORT_H
#define EIGEN_UMFPACKSUPPORT_H
namespace Eigen {
/* TODO extract L, extract U, compute det, etc... */
// generic double/complex<double> wrapper functions:
inline void umfpack_free_numeric(void **Numeric, double)
{ umfpack_di_free_numeric(Numeric); *Numeric = 0; }
inline void umfpack_free_numeric(void **Numeric, std::complex<double>)
{ umfpack_zi_free_numeric(Numeric); *Numeric = 0; }
inline void umfpack_free_symbolic(void **Symbolic, double)
{ umfpack_di_free_symbolic(Symbolic); *Symbolic = 0; }
inline void umfpack_free_symbolic(void **Symbolic, std::complex<double>)
{ umfpack_zi_free_symbolic(Symbolic); *Symbolic = 0; }
inline int umfpack_symbolic(int n_row,int n_col,
const int Ap[], const int Ai[], const double Ax[], void **Symbolic,
const double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO])
{
return umfpack_di_symbolic(n_row,n_col,Ap,Ai,Ax,Symbolic,Control,Info);
}
inline int umfpack_symbolic(int n_row,int n_col,
const int Ap[], const int Ai[], const std::complex<double> Ax[], void **Symbolic,
const double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO])
{
return umfpack_zi_symbolic(n_row,n_col,Ap,Ai,&numext::real_ref(Ax[0]),0,Symbolic,Control,Info);
}
inline int umfpack_numeric( const int Ap[], const int Ai[], const double Ax[],
void *Symbolic, void **Numeric,
const double Control[UMFPACK_CONTROL],double Info [UMFPACK_INFO])
{
return umfpack_di_numeric(Ap,Ai,Ax,Symbolic,Numeric,Control,Info);
}
inline int umfpack_numeric( const int Ap[], const int Ai[], const std::complex<double> Ax[],
void *Symbolic, void **Numeric,
const double Control[UMFPACK_CONTROL],double Info [UMFPACK_INFO])
{
return umfpack_zi_numeric(Ap,Ai,&numext::real_ref(Ax[0]),0,Symbolic,Numeric,Control,Info);
}
inline int umfpack_solve( int sys, const int Ap[], const int Ai[], const double Ax[],
double X[], const double B[], void *Numeric,
const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO])
{
return umfpack_di_solve(sys,Ap,Ai,Ax,X,B,Numeric,Control,Info);
}
inline int umfpack_solve( int sys, const int Ap[], const int Ai[], const std::complex<double> Ax[],
std::complex<double> X[], const std::complex<double> B[], void *Numeric,
const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO])
{
return umfpack_zi_solve(sys,Ap,Ai,&numext::real_ref(Ax[0]),0,&numext::real_ref(X[0]),0,&numext::real_ref(B[0]),0,Numeric,Control,Info);
}
inline int umfpack_get_lunz(int *lnz, int *unz, int *n_row, int *n_col, int *nz_udiag, void *Numeric, double)
{
return umfpack_di_get_lunz(lnz,unz,n_row,n_col,nz_udiag,Numeric);
}
inline int umfpack_get_lunz(int *lnz, int *unz, int *n_row, int *n_col, int *nz_udiag, void *Numeric, std::complex<double>)
{
return umfpack_zi_get_lunz(lnz,unz,n_row,n_col,nz_udiag,Numeric);
}
inline int umfpack_get_numeric(int Lp[], int Lj[], double Lx[], int Up[], int Ui[], double Ux[],
int P[], int Q[], double Dx[], int *do_recip, double Rs[], void *Numeric)
{
return umfpack_di_get_numeric(Lp,Lj,Lx,Up,Ui,Ux,P,Q,Dx,do_recip,Rs,Numeric);
}
inline int umfpack_get_numeric(int Lp[], int Lj[], std::complex<double> Lx[], int Up[], int Ui[], std::complex<double> Ux[],
int P[], int Q[], std::complex<double> Dx[], int *do_recip, double Rs[], void *Numeric)
{
double& lx0_real = numext::real_ref(Lx[0]);
double& ux0_real = numext::real_ref(Ux[0]);
double& dx0_real = numext::real_ref(Dx[0]);
return umfpack_zi_get_numeric(Lp,Lj,Lx?&lx0_real:0,0,Up,Ui,Ux?&ux0_real:0,0,P,Q,
Dx?&dx0_real:0,0,do_recip,Rs,Numeric);
}
inline int umfpack_get_determinant(double *Mx, double *Ex, void *NumericHandle, double User_Info [UMFPACK_INFO])
{
return umfpack_di_get_determinant(Mx,Ex,NumericHandle,User_Info);
}
inline int umfpack_get_determinant(std::complex<double> *Mx, double *Ex, void *NumericHandle, double User_Info [UMFPACK_INFO])
{
double& mx_real = numext::real_ref(*Mx);
return umfpack_zi_get_determinant(&mx_real,0,Ex,NumericHandle,User_Info);
}
/** \ingroup UmfPackSupport_Module
* \brief A sparse LU factorization and solver based on UmfPack
*
* This class allows to solve for A.X = B sparse linear problems via a LU factorization
* using the UmfPack library. The sparse matrix A must be squared and full rank.
* The vectors or matrices X and B can be either dense or sparse.
*
* \warning The input matrix A should be in a \b compressed and \b column-major form.
* Otherwise an expensive copy will be made. You can call the inexpensive makeCompressed() to get a compressed matrix.
* \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
*
* \sa \ref TutorialSparseDirectSolvers
*/
template<typename _MatrixType>
class UmfPackLU : public SparseSolverBase<UmfPackLU<_MatrixType> >
{
protected:
typedef SparseSolverBase<UmfPackLU<_MatrixType> > Base;
using Base::m_isInitialized;
public:
using Base::_solve_impl;
typedef _MatrixType MatrixType;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef typename MatrixType::Index Index;
typedef Matrix<Scalar,Dynamic,1> Vector;
typedef Matrix<int, 1, MatrixType::ColsAtCompileTime> IntRowVectorType;
typedef Matrix<int, MatrixType::RowsAtCompileTime, 1> IntColVectorType;
typedef SparseMatrix<Scalar> LUMatrixType;
typedef SparseMatrix<Scalar,ColMajor,int> UmfpackMatrixType;
public:
UmfPackLU() { init(); }
UmfPackLU(const MatrixType& matrix)
{
init();
compute(matrix);
}
~UmfPackLU()
{
if(m_symbolic) umfpack_free_symbolic(&m_symbolic,Scalar());
if(m_numeric) umfpack_free_numeric(&m_numeric,Scalar());
}
inline Index rows() const { return m_copyMatrix.rows(); }
inline Index cols() const { return m_copyMatrix.cols(); }
/** \brief Reports whether previous computation was successful.
*
* \returns \c Success if computation was succesful,
* \c NumericalIssue if the matrix.appears to be negative.
*/
ComputationInfo info() const
{
eigen_assert(m_isInitialized && "Decomposition is not initialized.");
return m_info;
}
inline const LUMatrixType& matrixL() const
{
if (m_extractedDataAreDirty) extractData();
return m_l;
}
inline const LUMatrixType& matrixU() const
{
if (m_extractedDataAreDirty) extractData();
return m_u;
}
inline const IntColVectorType& permutationP() const
{
if (m_extractedDataAreDirty) extractData();
return m_p;
}
inline const IntRowVectorType& permutationQ() const
{
if (m_extractedDataAreDirty) extractData();
return m_q;
}
/** Computes the sparse Cholesky decomposition of \a matrix
* Note that the matrix should be column-major, and in compressed format for best performance.
* \sa SparseMatrix::makeCompressed().
*/
void compute(const MatrixType& matrix)
{
analyzePattern(matrix);
factorize(matrix);
}
#ifndef EIGEN_TEST_EVALUATORS
/** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
*
* \sa compute()
*/
template<typename Rhs>
inline const internal::solve_retval<UmfPackLU, Rhs> solve(const MatrixBase<Rhs>& b) const
{
eigen_assert(m_isInitialized && "UmfPackLU is not initialized.");
eigen_assert(rows()==b.rows()
&& "UmfPackLU::solve(): invalid number of rows of the right hand side matrix b");
return internal::solve_retval<UmfPackLU, Rhs>(*this, b.derived());
}
/** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
*
* \sa compute()
*/
template<typename Rhs>
inline const internal::sparse_solve_retval<UmfPackLU, Rhs> solve(const SparseMatrixBase<Rhs>& b) const
{
eigen_assert(m_isInitialized && "UmfPackLU is not initialized.");
eigen_assert(rows()==b.rows()
&& "UmfPackLU::solve(): invalid number of rows of the right hand side matrix b");
return internal::sparse_solve_retval<UmfPackLU, Rhs>(*this, b.derived());
}
#endif
/** Performs a symbolic decomposition on the sparcity of \a matrix.
*
* This function is particularly useful when solving for several problems having the same structure.
*
* \sa factorize(), compute()
*/
void analyzePattern(const MatrixType& matrix)
{
if(m_symbolic)
umfpack_free_symbolic(&m_symbolic,Scalar());
if(m_numeric)
umfpack_free_numeric(&m_numeric,Scalar());
grapInput(matrix);
int errorCode = 0;
errorCode = umfpack_symbolic(matrix.rows(), matrix.cols(), m_outerIndexPtr, m_innerIndexPtr, m_valuePtr,
&m_symbolic, 0, 0);
m_isInitialized = true;
m_info = errorCode ? InvalidInput : Success;
m_analysisIsOk = true;
m_factorizationIsOk = false;
}
/** Performs a numeric decomposition of \a matrix
*
* The given matrix must has the same sparcity than the matrix on which the pattern anylysis has been performed.
*
* \sa analyzePattern(), compute()
*/
void factorize(const MatrixType& matrix)
{
eigen_assert(m_analysisIsOk && "UmfPackLU: you must first call analyzePattern()");
if(m_numeric)
umfpack_free_numeric(&m_numeric,Scalar());
grapInput(matrix);
int errorCode;
errorCode = umfpack_numeric(m_outerIndexPtr, m_innerIndexPtr, m_valuePtr,
m_symbolic, &m_numeric, 0, 0);
m_info = errorCode ? NumericalIssue : Success;
m_factorizationIsOk = true;
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** \internal */
template<typename BDerived,typename XDerived>
bool _solve_impl(const MatrixBase<BDerived> &b, MatrixBase<XDerived> &x) const;
#endif
Scalar determinant() const;
void extractData() const;
protected:
void init()
{
m_info = InvalidInput;
m_isInitialized = false;
m_numeric = 0;
m_symbolic = 0;
m_outerIndexPtr = 0;
m_innerIndexPtr = 0;
m_valuePtr = 0;
}
void grapInput(const MatrixType& mat)
{
m_copyMatrix.resize(mat.rows(), mat.cols());
if( ((MatrixType::Flags&RowMajorBit)==RowMajorBit) || sizeof(typename MatrixType::Index)!=sizeof(int) || !mat.isCompressed() )
{
// non supported input -> copy
m_copyMatrix = mat;
m_outerIndexPtr = m_copyMatrix.outerIndexPtr();
m_innerIndexPtr = m_copyMatrix.innerIndexPtr();
m_valuePtr = m_copyMatrix.valuePtr();
}
else
{
m_outerIndexPtr = mat.outerIndexPtr();
m_innerIndexPtr = mat.innerIndexPtr();
m_valuePtr = mat.valuePtr();
}
}
// cached data to reduce reallocation, etc.
mutable LUMatrixType m_l;
mutable LUMatrixType m_u;
mutable IntColVectorType m_p;
mutable IntRowVectorType m_q;
UmfpackMatrixType m_copyMatrix;
const Scalar* m_valuePtr;
const int* m_outerIndexPtr;
const int* m_innerIndexPtr;
void* m_numeric;
void* m_symbolic;
mutable ComputationInfo m_info;
int m_factorizationIsOk;
int m_analysisIsOk;
mutable bool m_extractedDataAreDirty;
private:
UmfPackLU(UmfPackLU& ) { }
};
template<typename MatrixType>
void UmfPackLU<MatrixType>::extractData() const
{
if (m_extractedDataAreDirty)
{
// get size of the data
int lnz, unz, rows, cols, nz_udiag;
umfpack_get_lunz(&lnz, &unz, &rows, &cols, &nz_udiag, m_numeric, Scalar());
// allocate data
m_l.resize(rows,(std::min)(rows,cols));
m_l.resizeNonZeros(lnz);
m_u.resize((std::min)(rows,cols),cols);
m_u.resizeNonZeros(unz);
m_p.resize(rows);
m_q.resize(cols);
// extract
umfpack_get_numeric(m_l.outerIndexPtr(), m_l.innerIndexPtr(), m_l.valuePtr(),
m_u.outerIndexPtr(), m_u.innerIndexPtr(), m_u.valuePtr(),
m_p.data(), m_q.data(), 0, 0, 0, m_numeric);
m_extractedDataAreDirty = false;
}
}
template<typename MatrixType>
typename UmfPackLU<MatrixType>::Scalar UmfPackLU<MatrixType>::determinant() const
{
Scalar det;
umfpack_get_determinant(&det, 0, m_numeric, 0);
return det;
}
template<typename MatrixType>
template<typename BDerived,typename XDerived>
bool UmfPackLU<MatrixType>::_solve_impl(const MatrixBase<BDerived> &b, MatrixBase<XDerived> &x) const
{
const int rhsCols = b.cols();
eigen_assert((BDerived::Flags&RowMajorBit)==0 && "UmfPackLU backend does not support non col-major rhs yet");
eigen_assert((XDerived::Flags&RowMajorBit)==0 && "UmfPackLU backend does not support non col-major result yet");
eigen_assert(b.derived().data() != x.derived().data() && " Umfpack does not support inplace solve");
int errorCode;
for (int j=0; j<rhsCols; ++j)
{
errorCode = umfpack_solve(UMFPACK_A,
m_outerIndexPtr, m_innerIndexPtr, m_valuePtr,
&x.col(j).coeffRef(0), &b.const_cast_derived().col(j).coeffRef(0), m_numeric, 0, 0);
if (errorCode!=0)
return false;
}
return true;
}
#ifndef EIGEN_TEST_EVALUATORS
namespace internal {
template<typename _MatrixType, typename Rhs>
struct solve_retval<UmfPackLU<_MatrixType>, Rhs>
: solve_retval_base<UmfPackLU<_MatrixType>, Rhs>
{
typedef UmfPackLU<_MatrixType> Dec;
EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
template<typename Dest> void evalTo(Dest& dst) const
{
dec()._solve_impl(rhs(),dst);
}
};
template<typename _MatrixType, typename Rhs>
struct sparse_solve_retval<UmfPackLU<_MatrixType>, Rhs>
: sparse_solve_retval_base<UmfPackLU<_MatrixType>, Rhs>
{
typedef UmfPackLU<_MatrixType> Dec;
EIGEN_MAKE_SPARSE_SOLVE_HELPERS(Dec,Rhs)
template<typename Dest> void evalTo(Dest& dst) const
{
this->defaultEvalTo(dst);
}
};
} // end namespace internal
#endif
} // end namespace Eigen
#endif // EIGEN_UMFPACKSUPPORT_H
|