aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/OrderingMethods/Amd.h
blob: ec13077fed5d151f76b71ec8c5f69101433fd791 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

/*

NOTE: this routine has been adapted from the CSparse library:

Copyright (c) 2006, Timothy A. Davis.
http://www.cise.ufl.edu/research/sparse/CSparse

CSparse is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.

CSparse is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with this Module; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA

*/

#ifndef EIGEN_SPARSE_AMD_H
#define EIGEN_SPARSE_AMD_H

namespace Eigen { 

namespace internal {
  
template<typename T> inline T amd_flip(const T& i) { return -i-2; }
template<typename T> inline T amd_unflip(const T& i) { return i<0 ? amd_flip(i) : i; }
template<typename T0, typename T1> inline bool amd_marked(const T0* w, const T1& j) { return w[j]<0; }
template<typename T0, typename T1> inline void amd_mark(const T0* w, const T1& j) { return w[j] = amd_flip(w[j]); }

/* clear w */
template<typename Index>
static int cs_wclear (Index mark, Index lemax, Index *w, Index n)
{
  Index k;
  if(mark < 2 || (mark + lemax < 0))
  {
    for(k = 0; k < n; k++)
      if(w[k] != 0)
        w[k] = 1;
    mark = 2;
  }
  return (mark);     /* at this point, w[0..n-1] < mark holds */
}

/* depth-first search and postorder of a tree rooted at node j */
template<typename Index>
Index cs_tdfs(Index j, Index k, Index *head, const Index *next, Index *post, Index *stack)
{
  int i, p, top = 0;
  if(!head || !next || !post || !stack) return (-1);    /* check inputs */
  stack[0] = j;                 /* place j on the stack */
  while (top >= 0)                /* while (stack is not empty) */
  {
    p = stack[top];           /* p = top of stack */
    i = head[p];              /* i = youngest child of p */
    if(i == -1)
    {
      top--;                 /* p has no unordered children left */
      post[k++] = p;        /* node p is the kth postordered node */
    }
    else
    {
      head[p] = next[i];   /* remove i from children of p */
      stack[++top] = i;     /* start dfs on child node i */
    }
  }
  return k;
}


/** \internal
  * Approximate minimum degree ordering algorithm.
  * \returns the permutation P reducing the fill-in of the input matrix \a C
  * The input matrix \a C must be a selfadjoint compressed column major SparseMatrix object. Both the upper and lower parts have to be stored, but the diagonal entries are optional.
  * On exit the values of C are destroyed */
template<typename Scalar, typename Index>
void minimum_degree_ordering(SparseMatrix<Scalar,ColMajor,Index>& C, PermutationMatrix<Dynamic,Dynamic,Index>& perm)
{
  using std::sqrt;
  typedef SparseMatrix<Scalar,ColMajor,Index> CCS;
  
  int d, dk, dext, lemax = 0, e, elenk, eln, i, j, k, k1,
      k2, k3, jlast, ln, dense, nzmax, mindeg = 0, nvi, nvj, nvk, mark, wnvi,
      ok, nel = 0, p, p1, p2, p3, p4, pj, pk, pk1, pk2, pn, q, t;
  unsigned int h;
  
  Index n = C.cols();
  dense = std::max<Index> (16, Index(10 * sqrt(double(n))));   /* find dense threshold */
  dense = std::min<Index> (n-2, dense);
  
  Index cnz = C.nonZeros();
  perm.resize(n+1);
  t = cnz + cnz/5 + 2*n;                 /* add elbow room to C */
  C.resizeNonZeros(t);
  
  Index* W       = new Index[8*(n+1)]; /* get workspace */
  Index* len     = W;
  Index* nv      = W +   (n+1);
  Index* next    = W + 2*(n+1);
  Index* head    = W + 3*(n+1);
  Index* elen    = W + 4*(n+1);
  Index* degree  = W + 5*(n+1);
  Index* w       = W + 6*(n+1);
  Index* hhead   = W + 7*(n+1);
  Index* last    = perm.indices().data();                              /* use P as workspace for last */
  
  /* --- Initialize quotient graph ---------------------------------------- */
  Index* Cp = C.outerIndexPtr();
  Index* Ci = C.innerIndexPtr();
  for(k = 0; k < n; k++)
    len[k] = Cp[k+1] - Cp[k];
  len[n] = 0;
  nzmax = t;
  
  for(i = 0; i <= n; i++)
  {
    head[i]   = -1;                     // degree list i is empty
    last[i]   = -1;
    next[i]   = -1;
    hhead[i]  = -1;                     // hash list i is empty 
    nv[i]     = 1;                      // node i is just one node
    w[i]      = 1;                      // node i is alive
    elen[i]   = 0;                      // Ek of node i is empty
    degree[i] = len[i];                 // degree of node i
  }
  mark = internal::cs_wclear<Index>(0, 0, w, n);         /* clear w */
  elen[n] = -2;                         /* n is a dead element */
  Cp[n] = -1;                           /* n is a root of assembly tree */
  w[n] = 0;                             /* n is a dead element */
  
  /* --- Initialize degree lists ------------------------------------------ */
  for(i = 0; i < n; i++)
  {
    d = degree[i];
    if(d == 0)                         /* node i is empty */
    {
      elen[i] = -2;                 /* element i is dead */
      nel++;
      Cp[i] = -1;                   /* i is a root of assembly tree */
      w[i] = 0;
    }
    else if(d > dense)                 /* node i is dense */
    {
      nv[i] = 0;                    /* absorb i into element n */
      elen[i] = -1;                 /* node i is dead */
      nel++;
      Cp[i] = amd_flip (n);
      nv[n]++;
    }
    else
    {
      if(head[d] != -1) last[head[d]] = i;
      next[i] = head[d];           /* put node i in degree list d */
      head[d] = i;
    }
  }
  
  while (nel < n)                         /* while (selecting pivots) do */
  {
    /* --- Select node of minimum approximate degree -------------------- */
    for(k = -1; mindeg < n && (k = head[mindeg]) == -1; mindeg++) {}
    if(next[k] != -1) last[next[k]] = -1;
    head[mindeg] = next[k];          /* remove k from degree list */
    elenk = elen[k];                  /* elenk = |Ek| */
    nvk = nv[k];                      /* # of nodes k represents */
    nel += nvk;                        /* nv[k] nodes of A eliminated */
    
    /* --- Garbage collection ------------------------------------------- */
    if(elenk > 0 && cnz + mindeg >= nzmax)
    {
      for(j = 0; j < n; j++)
      {
        if((p = Cp[j]) >= 0)      /* j is a live node or element */
        {
          Cp[j] = Ci[p];          /* save first entry of object */
          Ci[p] = amd_flip (j);    /* first entry is now amd_flip(j) */
        }
      }
      for(q = 0, p = 0; p < cnz; ) /* scan all of memory */
      {
        if((j = amd_flip (Ci[p++])) >= 0)  /* found object j */
        {
          Ci[q] = Cp[j];       /* restore first entry of object */
          Cp[j] = q++;          /* new pointer to object j */
          for(k3 = 0; k3 < len[j]-1; k3++) Ci[q++] = Ci[p++];
        }
      }
      cnz = q;                       /* Ci[cnz...nzmax-1] now free */
    }
    
    /* --- Construct new element ---------------------------------------- */
    dk = 0;
    nv[k] = -nvk;                     /* flag k as in Lk */
    p = Cp[k];
    pk1 = (elenk == 0) ? p : cnz;      /* do in place if elen[k] == 0 */
    pk2 = pk1;
    for(k1 = 1; k1 <= elenk + 1; k1++)
    {
      if(k1 > elenk)
      {
        e = k;                     /* search the nodes in k */
        pj = p;                    /* list of nodes starts at Ci[pj]*/
        ln = len[k] - elenk;      /* length of list of nodes in k */
      }
      else
      {
        e = Ci[p++];              /* search the nodes in e */
        pj = Cp[e];
        ln = len[e];              /* length of list of nodes in e */
      }
      for(k2 = 1; k2 <= ln; k2++)
      {
        i = Ci[pj++];
        if((nvi = nv[i]) <= 0) continue; /* node i dead, or seen */
        dk += nvi;                 /* degree[Lk] += size of node i */
        nv[i] = -nvi;             /* negate nv[i] to denote i in Lk*/
        Ci[pk2++] = i;            /* place i in Lk */
        if(next[i] != -1) last[next[i]] = last[i];
        if(last[i] != -1)         /* remove i from degree list */
        {
          next[last[i]] = next[i];
        }
        else
        {
          head[degree[i]] = next[i];
        }
      }
      if(e != k)
      {
        Cp[e] = amd_flip (k);      /* absorb e into k */
        w[e] = 0;                 /* e is now a dead element */
      }
    }
    if(elenk != 0) cnz = pk2;         /* Ci[cnz...nzmax] is free */
    degree[k] = dk;                   /* external degree of k - |Lk\i| */
    Cp[k] = pk1;                      /* element k is in Ci[pk1..pk2-1] */
    len[k] = pk2 - pk1;
    elen[k] = -2;                     /* k is now an element */
    
    /* --- Find set differences ----------------------------------------- */
    mark = internal::cs_wclear<Index>(mark, lemax, w, n);  /* clear w if necessary */
    for(pk = pk1; pk < pk2; pk++)    /* scan 1: find |Le\Lk| */
    {
      i = Ci[pk];
      if((eln = elen[i]) <= 0) continue;/* skip if elen[i] empty */
      nvi = -nv[i];                      /* nv[i] was negated */
      wnvi = mark - nvi;
      for(p = Cp[i]; p <= Cp[i] + eln - 1; p++)  /* scan Ei */
      {
        e = Ci[p];
        if(w[e] >= mark)
        {
          w[e] -= nvi;          /* decrement |Le\Lk| */
        }
        else if(w[e] != 0)        /* ensure e is a live element */
        {
          w[e] = degree[e] + wnvi; /* 1st time e seen in scan 1 */
        }
      }
    }
    
    /* --- Degree update ------------------------------------------------ */
    for(pk = pk1; pk < pk2; pk++)    /* scan2: degree update */
    {
      i = Ci[pk];                   /* consider node i in Lk */
      p1 = Cp[i];
      p2 = p1 + elen[i] - 1;
      pn = p1;
      for(h = 0, d = 0, p = p1; p <= p2; p++)    /* scan Ei */
      {
        e = Ci[p];
        if(w[e] != 0)             /* e is an unabsorbed element */
        {
          dext = w[e] - mark;   /* dext = |Le\Lk| */
          if(dext > 0)
          {
            d += dext;         /* sum up the set differences */
            Ci[pn++] = e;     /* keep e in Ei */
            h += e;            /* compute the hash of node i */
          }
          else
          {
            Cp[e] = amd_flip (k);  /* aggressive absorb. e->k */
            w[e] = 0;             /* e is a dead element */
          }
        }
      }
      elen[i] = pn - p1 + 1;        /* elen[i] = |Ei| */
      p3 = pn;
      p4 = p1 + len[i];
      for(p = p2 + 1; p < p4; p++) /* prune edges in Ai */
      {
        j = Ci[p];
        if((nvj = nv[j]) <= 0) continue; /* node j dead or in Lk */
        d += nvj;                  /* degree(i) += |j| */
        Ci[pn++] = j;             /* place j in node list of i */
        h += j;                    /* compute hash for node i */
      }
      if(d == 0)                     /* check for mass elimination */
      {
        Cp[i] = amd_flip (k);      /* absorb i into k */
        nvi = -nv[i];
        dk -= nvi;                 /* |Lk| -= |i| */
        nvk += nvi;                /* |k| += nv[i] */
        nel += nvi;
        nv[i] = 0;
        elen[i] = -1;             /* node i is dead */
      }
      else
      {
        degree[i] = std::min<Index> (degree[i], d);   /* update degree(i) */
        Ci[pn] = Ci[p3];         /* move first node to end */
        Ci[p3] = Ci[p1];         /* move 1st el. to end of Ei */
        Ci[p1] = k;               /* add k as 1st element in of Ei */
        len[i] = pn - p1 + 1;     /* new len of adj. list of node i */
        h %= n;                    /* finalize hash of i */
        next[i] = hhead[h];      /* place i in hash bucket */
        hhead[h] = i;
        last[i] = h;              /* save hash of i in last[i] */
      }
    }                                   /* scan2 is done */
    degree[k] = dk;                   /* finalize |Lk| */
    lemax = std::max<Index>(lemax, dk);
    mark = internal::cs_wclear<Index>(mark+lemax, lemax, w, n);    /* clear w */
    
    /* --- Supernode detection ------------------------------------------ */
    for(pk = pk1; pk < pk2; pk++)
    {
      i = Ci[pk];
      if(nv[i] >= 0) continue;         /* skip if i is dead */
      h = last[i];                      /* scan hash bucket of node i */
      i = hhead[h];
      hhead[h] = -1;                    /* hash bucket will be empty */
      for(; i != -1 && next[i] != -1; i = next[i], mark++)
      {
        ln = len[i];
        eln = elen[i];
        for(p = Cp[i]+1; p <= Cp[i] + ln-1; p++) w[Ci[p]] = mark;
        jlast = i;
        for(j = next[i]; j != -1; ) /* compare i with all j */
        {
          ok = (len[j] == ln) && (elen[j] == eln);
          for(p = Cp[j] + 1; ok && p <= Cp[j] + ln - 1; p++)
          {
            if(w[Ci[p]] != mark) ok = 0;    /* compare i and j*/
          }
          if(ok)                     /* i and j are identical */
          {
            Cp[j] = amd_flip (i);  /* absorb j into i */
            nv[i] += nv[j];
            nv[j] = 0;
            elen[j] = -1;         /* node j is dead */
            j = next[j];          /* delete j from hash bucket */
            next[jlast] = j;
          }
          else
          {
            jlast = j;             /* j and i are different */
            j = next[j];
          }
        }
      }
    }
    
    /* --- Finalize new element------------------------------------------ */
    for(p = pk1, pk = pk1; pk < pk2; pk++)   /* finalize Lk */
    {
      i = Ci[pk];
      if((nvi = -nv[i]) <= 0) continue;/* skip if i is dead */
      nv[i] = nvi;                      /* restore nv[i] */
      d = degree[i] + dk - nvi;         /* compute external degree(i) */
      d = std::min<Index> (d, n - nel - nvi);
      if(head[d] != -1) last[head[d]] = i;
      next[i] = head[d];               /* put i back in degree list */
      last[i] = -1;
      head[d] = i;
      mindeg = std::min<Index> (mindeg, d);       /* find new minimum degree */
      degree[i] = d;
      Ci[p++] = i;                      /* place i in Lk */
    }
    nv[k] = nvk;                      /* # nodes absorbed into k */
    if((len[k] = p-pk1) == 0)         /* length of adj list of element k*/
    {
      Cp[k] = -1;                   /* k is a root of the tree */
      w[k] = 0;                     /* k is now a dead element */
    }
    if(elenk != 0) cnz = p;           /* free unused space in Lk */
  }
  
  /* --- Postordering ----------------------------------------------------- */
  for(i = 0; i < n; i++) Cp[i] = amd_flip (Cp[i]);/* fix assembly tree */
  for(j = 0; j <= n; j++) head[j] = -1;
  for(j = n; j >= 0; j--)              /* place unordered nodes in lists */
  {
    if(nv[j] > 0) continue;          /* skip if j is an element */
    next[j] = head[Cp[j]];          /* place j in list of its parent */
    head[Cp[j]] = j;
  }
  for(e = n; e >= 0; e--)              /* place elements in lists */
  {
    if(nv[e] <= 0) continue;         /* skip unless e is an element */
    if(Cp[e] != -1)
    {
      next[e] = head[Cp[e]];      /* place e in list of its parent */
      head[Cp[e]] = e;
    }
  }
  for(k = 0, i = 0; i <= n; i++)       /* postorder the assembly tree */
  {
    if(Cp[i] == -1) k = internal::cs_tdfs<Index>(i, k, head, next, perm.indices().data(), w);
  }
  
  perm.indices().conservativeResize(n);

  delete[] W;
}

} // namespace internal

} // end namespace Eigen

#endif // EIGEN_SPARSE_AMD_H