aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/LU/PartialPivLU.h
blob: 34aed72494d4315d7ba22950445c26fc27b2fbae (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_PARTIALLU_H
#define EIGEN_PARTIALLU_H

namespace Eigen {

namespace internal {
template<typename _MatrixType> struct traits<PartialPivLU<_MatrixType> >
 : traits<_MatrixType>
{
  typedef MatrixXpr XprKind;
  typedef SolverStorage StorageKind;
  typedef int StorageIndex;
  typedef traits<_MatrixType> BaseTraits;
  enum {
    Flags = BaseTraits::Flags & RowMajorBit,
    CoeffReadCost = Dynamic
  };
};

template<typename T,typename Derived>
struct enable_if_ref;
// {
//   typedef Derived type;
// };

template<typename T,typename Derived>
struct enable_if_ref<Ref<T>,Derived> {
  typedef Derived type;
};

} // end namespace internal

/** \ingroup LU_Module
  *
  * \class PartialPivLU
  *
  * \brief LU decomposition of a matrix with partial pivoting, and related features
  *
  * \tparam _MatrixType the type of the matrix of which we are computing the LU decomposition
  *
  * This class represents a LU decomposition of a \b square \b invertible matrix, with partial pivoting: the matrix A
  * is decomposed as A = PLU where L is unit-lower-triangular, U is upper-triangular, and P
  * is a permutation matrix.
  *
  * Typically, partial pivoting LU decomposition is only considered numerically stable for square invertible
  * matrices. Thus LAPACK's dgesv and dgesvx require the matrix to be square and invertible. The present class
  * does the same. It will assert that the matrix is square, but it won't (actually it can't) check that the
  * matrix is invertible: it is your task to check that you only use this decomposition on invertible matrices.
  *
  * The guaranteed safe alternative, working for all matrices, is the full pivoting LU decomposition, provided
  * by class FullPivLU.
  *
  * This is \b not a rank-revealing LU decomposition. Many features are intentionally absent from this class,
  * such as rank computation. If you need these features, use class FullPivLU.
  *
  * This LU decomposition is suitable to invert invertible matrices. It is what MatrixBase::inverse() uses
  * in the general case.
  * On the other hand, it is \b not suitable to determine whether a given matrix is invertible.
  *
  * The data of the LU decomposition can be directly accessed through the methods matrixLU(), permutationP().
  *
  * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism.
  *
  * \sa MatrixBase::partialPivLu(), MatrixBase::determinant(), MatrixBase::inverse(), MatrixBase::computeInverse(), class FullPivLU
  */
template<typename _MatrixType> class PartialPivLU
  : public SolverBase<PartialPivLU<_MatrixType> >
{
  public:

    typedef _MatrixType MatrixType;
    typedef SolverBase<PartialPivLU> Base;
    friend class SolverBase<PartialPivLU>;

    EIGEN_GENERIC_PUBLIC_INTERFACE(PartialPivLU)
    enum {
      MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
      MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
    };
    typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationType;
    typedef Transpositions<RowsAtCompileTime, MaxRowsAtCompileTime> TranspositionType;
    typedef typename MatrixType::PlainObject PlainObject;

    /**
      * \brief Default Constructor.
      *
      * The default constructor is useful in cases in which the user intends to
      * perform decompositions via PartialPivLU::compute(const MatrixType&).
      */
    PartialPivLU();

    /** \brief Default Constructor with memory preallocation
      *
      * Like the default constructor but with preallocation of the internal data
      * according to the specified problem \a size.
      * \sa PartialPivLU()
      */
    explicit PartialPivLU(Index size);

    /** Constructor.
      *
      * \param matrix the matrix of which to compute the LU decomposition.
      *
      * \warning The matrix should have full rank (e.g. if it's square, it should be invertible).
      * If you need to deal with non-full rank, use class FullPivLU instead.
      */
    template<typename InputType>
    explicit PartialPivLU(const EigenBase<InputType>& matrix);

    /** Constructor for \link InplaceDecomposition inplace decomposition \endlink
      *
      * \param matrix the matrix of which to compute the LU decomposition.
      *
      * \warning The matrix should have full rank (e.g. if it's square, it should be invertible).
      * If you need to deal with non-full rank, use class FullPivLU instead.
      */
    template<typename InputType>
    explicit PartialPivLU(EigenBase<InputType>& matrix);

    template<typename InputType>
    PartialPivLU& compute(const EigenBase<InputType>& matrix) {
      m_lu = matrix.derived();
      compute();
      return *this;
    }

    /** \returns the LU decomposition matrix: the upper-triangular part is U, the
      * unit-lower-triangular part is L (at least for square matrices; in the non-square
      * case, special care is needed, see the documentation of class FullPivLU).
      *
      * \sa matrixL(), matrixU()
      */
    inline const MatrixType& matrixLU() const
    {
      eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
      return m_lu;
    }

    /** \returns the permutation matrix P.
      */
    inline const PermutationType& permutationP() const
    {
      eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
      return m_p;
    }

    #ifdef EIGEN_PARSED_BY_DOXYGEN
    /** This method returns the solution x to the equation Ax=b, where A is the matrix of which
      * *this is the LU decomposition.
      *
      * \param b the right-hand-side of the equation to solve. Can be a vector or a matrix,
      *          the only requirement in order for the equation to make sense is that
      *          b.rows()==A.rows(), where A is the matrix of which *this is the LU decomposition.
      *
      * \returns the solution.
      *
      * Example: \include PartialPivLU_solve.cpp
      * Output: \verbinclude PartialPivLU_solve.out
      *
      * Since this PartialPivLU class assumes anyway that the matrix A is invertible, the solution
      * theoretically exists and is unique regardless of b.
      *
      * \sa TriangularView::solve(), inverse(), computeInverse()
      */
    template<typename Rhs>
    inline const Solve<PartialPivLU, Rhs>
    solve(const MatrixBase<Rhs>& b) const;
    #endif

    /** \returns an estimate of the reciprocal condition number of the matrix of which \c *this is
        the LU decomposition.
      */
    inline RealScalar rcond() const
    {
      eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
      return internal::rcond_estimate_helper(m_l1_norm, *this);
    }

    /** \returns the inverse of the matrix of which *this is the LU decomposition.
      *
      * \warning The matrix being decomposed here is assumed to be invertible. If you need to check for
      *          invertibility, use class FullPivLU instead.
      *
      * \sa MatrixBase::inverse(), LU::inverse()
      */
    inline const Inverse<PartialPivLU> inverse() const
    {
      eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
      return Inverse<PartialPivLU>(*this);
    }

    /** \returns the determinant of the matrix of which
      * *this is the LU decomposition. It has only linear complexity
      * (that is, O(n) where n is the dimension of the square matrix)
      * as the LU decomposition has already been computed.
      *
      * \note For fixed-size matrices of size up to 4, MatrixBase::determinant() offers
      *       optimized paths.
      *
      * \warning a determinant can be very big or small, so for matrices
      * of large enough dimension, there is a risk of overflow/underflow.
      *
      * \sa MatrixBase::determinant()
      */
    Scalar determinant() const;

    MatrixType reconstructedMatrix() const;

    EIGEN_CONSTEXPR inline Index rows() const EIGEN_NOEXCEPT { return m_lu.rows(); }
    EIGEN_CONSTEXPR inline Index cols() const EIGEN_NOEXCEPT { return m_lu.cols(); }

    #ifndef EIGEN_PARSED_BY_DOXYGEN
    template<typename RhsType, typename DstType>
    EIGEN_DEVICE_FUNC
    void _solve_impl(const RhsType &rhs, DstType &dst) const {
     /* The decomposition PA = LU can be rewritten as A = P^{-1} L U.
      * So we proceed as follows:
      * Step 1: compute c = Pb.
      * Step 2: replace c by the solution x to Lx = c.
      * Step 3: replace c by the solution x to Ux = c.
      */

      // Step 1
      dst = permutationP() * rhs;

      // Step 2
      m_lu.template triangularView<UnitLower>().solveInPlace(dst);

      // Step 3
      m_lu.template triangularView<Upper>().solveInPlace(dst);
    }

    template<bool Conjugate, typename RhsType, typename DstType>
    EIGEN_DEVICE_FUNC
    void _solve_impl_transposed(const RhsType &rhs, DstType &dst) const {
     /* The decomposition PA = LU can be rewritten as A^T = U^T L^T P.
      * So we proceed as follows:
      * Step 1: compute c as the solution to L^T c = b
      * Step 2: replace c by the solution x to U^T x = c.
      * Step 3: update  c = P^-1 c.
      */

      eigen_assert(rhs.rows() == m_lu.cols());

      // Step 1
      dst = m_lu.template triangularView<Upper>().transpose()
                .template conjugateIf<Conjugate>().solve(rhs);
      // Step 2
      m_lu.template triangularView<UnitLower>().transpose()
          .template conjugateIf<Conjugate>().solveInPlace(dst);
      // Step 3
      dst = permutationP().transpose() * dst;
    }
    #endif

  protected:

    static void check_template_parameters()
    {
      EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
    }

    void compute();

    MatrixType m_lu;
    PermutationType m_p;
    TranspositionType m_rowsTranspositions;
    RealScalar m_l1_norm;
    signed char m_det_p;
    bool m_isInitialized;
};

template<typename MatrixType>
PartialPivLU<MatrixType>::PartialPivLU()
  : m_lu(),
    m_p(),
    m_rowsTranspositions(),
    m_l1_norm(0),
    m_det_p(0),
    m_isInitialized(false)
{
}

template<typename MatrixType>
PartialPivLU<MatrixType>::PartialPivLU(Index size)
  : m_lu(size, size),
    m_p(size),
    m_rowsTranspositions(size),
    m_l1_norm(0),
    m_det_p(0),
    m_isInitialized(false)
{
}

template<typename MatrixType>
template<typename InputType>
PartialPivLU<MatrixType>::PartialPivLU(const EigenBase<InputType>& matrix)
  : m_lu(matrix.rows(),matrix.cols()),
    m_p(matrix.rows()),
    m_rowsTranspositions(matrix.rows()),
    m_l1_norm(0),
    m_det_p(0),
    m_isInitialized(false)
{
  compute(matrix.derived());
}

template<typename MatrixType>
template<typename InputType>
PartialPivLU<MatrixType>::PartialPivLU(EigenBase<InputType>& matrix)
  : m_lu(matrix.derived()),
    m_p(matrix.rows()),
    m_rowsTranspositions(matrix.rows()),
    m_l1_norm(0),
    m_det_p(0),
    m_isInitialized(false)
{
  compute();
}

namespace internal {

/** \internal This is the blocked version of fullpivlu_unblocked() */
template<typename Scalar, int StorageOrder, typename PivIndex, int SizeAtCompileTime=Dynamic>
struct partial_lu_impl
{
  static const int UnBlockedBound = 16;
  static const bool UnBlockedAtCompileTime = SizeAtCompileTime!=Dynamic && SizeAtCompileTime<=UnBlockedBound;
  static const int ActualSizeAtCompileTime = UnBlockedAtCompileTime ? SizeAtCompileTime : Dynamic;
  // Remaining rows and columns at compile-time:
  static const int RRows = SizeAtCompileTime==2 ? 1 : Dynamic;
  static const int RCols = SizeAtCompileTime==2 ? 1 : Dynamic;
  typedef Matrix<Scalar, ActualSizeAtCompileTime, ActualSizeAtCompileTime, StorageOrder> MatrixType;
  typedef Ref<MatrixType> MatrixTypeRef;
  typedef Ref<Matrix<Scalar, Dynamic, Dynamic, StorageOrder> > BlockType;
  typedef typename MatrixType::RealScalar RealScalar;

  /** \internal performs the LU decomposition in-place of the matrix \a lu
    * using an unblocked algorithm.
    *
    * In addition, this function returns the row transpositions in the
    * vector \a row_transpositions which must have a size equal to the number
    * of columns of the matrix \a lu, and an integer \a nb_transpositions
    * which returns the actual number of transpositions.
    *
    * \returns The index of the first pivot which is exactly zero if any, or a negative number otherwise.
    */
  static Index unblocked_lu(MatrixTypeRef& lu, PivIndex* row_transpositions, PivIndex& nb_transpositions)
  {
    typedef scalar_score_coeff_op<Scalar> Scoring;
    typedef typename Scoring::result_type Score;
    const Index rows = lu.rows();
    const Index cols = lu.cols();
    const Index size = (std::min)(rows,cols);
    // For small compile-time matrices it is worth processing the last row separately:
    //  speedup: +100% for 2x2, +10% for others.
    const Index endk = UnBlockedAtCompileTime ? size-1 : size;
    nb_transpositions = 0;
    Index first_zero_pivot = -1;
    for(Index k = 0; k < endk; ++k)
    {
      int rrows = internal::convert_index<int>(rows-k-1);
      int rcols = internal::convert_index<int>(cols-k-1);

      Index row_of_biggest_in_col;
      Score biggest_in_corner
        = lu.col(k).tail(rows-k).unaryExpr(Scoring()).maxCoeff(&row_of_biggest_in_col);
      row_of_biggest_in_col += k;

      row_transpositions[k] = PivIndex(row_of_biggest_in_col);

      if(biggest_in_corner != Score(0))
      {
        if(k != row_of_biggest_in_col)
        {
          lu.row(k).swap(lu.row(row_of_biggest_in_col));
          ++nb_transpositions;
        }

        lu.col(k).tail(fix<RRows>(rrows)) /= lu.coeff(k,k);
      }
      else if(first_zero_pivot==-1)
      {
        // the pivot is exactly zero, we record the index of the first pivot which is exactly 0,
        // and continue the factorization such we still have A = PLU
        first_zero_pivot = k;
      }

      if(k<rows-1)
        lu.bottomRightCorner(fix<RRows>(rrows),fix<RCols>(rcols)).noalias() -= lu.col(k).tail(fix<RRows>(rrows)) * lu.row(k).tail(fix<RCols>(rcols));
    }

    // special handling of the last entry
    if(UnBlockedAtCompileTime)
    {
      Index k = endk;
      row_transpositions[k] = PivIndex(k);
      if (Scoring()(lu(k, k)) == Score(0) && first_zero_pivot == -1)
        first_zero_pivot = k;
    }

    return first_zero_pivot;
  }

  /** \internal performs the LU decomposition in-place of the matrix represented
    * by the variables \a rows, \a cols, \a lu_data, and \a lu_stride using a
    * recursive, blocked algorithm.
    *
    * In addition, this function returns the row transpositions in the
    * vector \a row_transpositions which must have a size equal to the number
    * of columns of the matrix \a lu, and an integer \a nb_transpositions
    * which returns the actual number of transpositions.
    *
    * \returns The index of the first pivot which is exactly zero if any, or a negative number otherwise.
    *
    * \note This very low level interface using pointers, etc. is to:
    *   1 - reduce the number of instantiations to the strict minimum
    *   2 - avoid infinite recursion of the instantiations with Block<Block<Block<...> > >
    */
  static Index blocked_lu(Index rows, Index cols, Scalar* lu_data, Index luStride, PivIndex* row_transpositions, PivIndex& nb_transpositions, Index maxBlockSize=256)
  {
    MatrixTypeRef lu = MatrixType::Map(lu_data,rows, cols, OuterStride<>(luStride));

    const Index size = (std::min)(rows,cols);

    // if the matrix is too small, no blocking:
    if(UnBlockedAtCompileTime || size<=UnBlockedBound)
    {
      return unblocked_lu(lu, row_transpositions, nb_transpositions);
    }

    // automatically adjust the number of subdivisions to the size
    // of the matrix so that there is enough sub blocks:
    Index blockSize;
    {
      blockSize = size/8;
      blockSize = (blockSize/16)*16;
      blockSize = (std::min)((std::max)(blockSize,Index(8)), maxBlockSize);
    }

    nb_transpositions = 0;
    Index first_zero_pivot = -1;
    for(Index k = 0; k < size; k+=blockSize)
    {
      Index bs = (std::min)(size-k,blockSize); // actual size of the block
      Index trows = rows - k - bs; // trailing rows
      Index tsize = size - k - bs; // trailing size

      // partition the matrix:
      //                          A00 | A01 | A02
      // lu  = A_0 | A_1 | A_2 =  A10 | A11 | A12
      //                          A20 | A21 | A22
      BlockType A_0 = lu.block(0,0,rows,k);
      BlockType A_2 = lu.block(0,k+bs,rows,tsize);
      BlockType A11 = lu.block(k,k,bs,bs);
      BlockType A12 = lu.block(k,k+bs,bs,tsize);
      BlockType A21 = lu.block(k+bs,k,trows,bs);
      BlockType A22 = lu.block(k+bs,k+bs,trows,tsize);

      PivIndex nb_transpositions_in_panel;
      // recursively call the blocked LU algorithm on [A11^T A21^T]^T
      // with a very small blocking size:
      Index ret = blocked_lu(trows+bs, bs, &lu.coeffRef(k,k), luStride,
                   row_transpositions+k, nb_transpositions_in_panel, 16);
      if(ret>=0 && first_zero_pivot==-1)
        first_zero_pivot = k+ret;

      nb_transpositions += nb_transpositions_in_panel;
      // update permutations and apply them to A_0
      for(Index i=k; i<k+bs; ++i)
      {
        Index piv = (row_transpositions[i] += internal::convert_index<PivIndex>(k));
        A_0.row(i).swap(A_0.row(piv));
      }

      if(trows)
      {
        // apply permutations to A_2
        for(Index i=k;i<k+bs; ++i)
          A_2.row(i).swap(A_2.row(row_transpositions[i]));

        // A12 = A11^-1 A12
        A11.template triangularView<UnitLower>().solveInPlace(A12);

        A22.noalias() -= A21 * A12;
      }
    }
    return first_zero_pivot;
  }
};

/** \internal performs the LU decomposition with partial pivoting in-place.
  */
template<typename MatrixType, typename TranspositionType>
void partial_lu_inplace(MatrixType& lu, TranspositionType& row_transpositions, typename TranspositionType::StorageIndex& nb_transpositions)
{
  // Special-case of zero matrix.
  if (lu.rows() == 0 || lu.cols() == 0) {
    nb_transpositions = 0;
    return;
  }
  eigen_assert(lu.cols() == row_transpositions.size());
  eigen_assert(row_transpositions.size() < 2 || (&row_transpositions.coeffRef(1)-&row_transpositions.coeffRef(0)) == 1);

  partial_lu_impl
    < typename MatrixType::Scalar, MatrixType::Flags&RowMajorBit?RowMajor:ColMajor,
      typename TranspositionType::StorageIndex,
      EIGEN_SIZE_MIN_PREFER_FIXED(MatrixType::RowsAtCompileTime,MatrixType::ColsAtCompileTime)>
    ::blocked_lu(lu.rows(), lu.cols(), &lu.coeffRef(0,0), lu.outerStride(), &row_transpositions.coeffRef(0), nb_transpositions);
}

} // end namespace internal

template<typename MatrixType>
void PartialPivLU<MatrixType>::compute()
{
  check_template_parameters();

  // the row permutation is stored as int indices, so just to be sure:
  eigen_assert(m_lu.rows()<NumTraits<int>::highest());

  if(m_lu.cols()>0)
    m_l1_norm = m_lu.cwiseAbs().colwise().sum().maxCoeff();
  else
    m_l1_norm = RealScalar(0);

  eigen_assert(m_lu.rows() == m_lu.cols() && "PartialPivLU is only for square (and moreover invertible) matrices");
  const Index size = m_lu.rows();

  m_rowsTranspositions.resize(size);

  typename TranspositionType::StorageIndex nb_transpositions;
  internal::partial_lu_inplace(m_lu, m_rowsTranspositions, nb_transpositions);
  m_det_p = (nb_transpositions%2) ? -1 : 1;

  m_p = m_rowsTranspositions;

  m_isInitialized = true;
}

template<typename MatrixType>
typename PartialPivLU<MatrixType>::Scalar PartialPivLU<MatrixType>::determinant() const
{
  eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
  return Scalar(m_det_p) * m_lu.diagonal().prod();
}

/** \returns the matrix represented by the decomposition,
 * i.e., it returns the product: P^{-1} L U.
 * This function is provided for debug purpose. */
template<typename MatrixType>
MatrixType PartialPivLU<MatrixType>::reconstructedMatrix() const
{
  eigen_assert(m_isInitialized && "LU is not initialized.");
  // LU
  MatrixType res = m_lu.template triangularView<UnitLower>().toDenseMatrix()
                 * m_lu.template triangularView<Upper>();

  // P^{-1}(LU)
  res = m_p.inverse() * res;

  return res;
}

/***** Implementation details *****************************************************/

namespace internal {

/***** Implementation of inverse() *****************************************************/
template<typename DstXprType, typename MatrixType>
struct Assignment<DstXprType, Inverse<PartialPivLU<MatrixType> >, internal::assign_op<typename DstXprType::Scalar,typename PartialPivLU<MatrixType>::Scalar>, Dense2Dense>
{
  typedef PartialPivLU<MatrixType> LuType;
  typedef Inverse<LuType> SrcXprType;
  static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename LuType::Scalar> &)
  {
    dst = src.nestedExpression().solve(MatrixType::Identity(src.rows(), src.cols()));
  }
};
} // end namespace internal

/******** MatrixBase methods *******/

/** \lu_module
  *
  * \return the partial-pivoting LU decomposition of \c *this.
  *
  * \sa class PartialPivLU
  */
template<typename Derived>
inline const PartialPivLU<typename MatrixBase<Derived>::PlainObject>
MatrixBase<Derived>::partialPivLu() const
{
  return PartialPivLU<PlainObject>(eval());
}

/** \lu_module
  *
  * Synonym of partialPivLu().
  *
  * \return the partial-pivoting LU decomposition of \c *this.
  *
  * \sa class PartialPivLU
  */
template<typename Derived>
inline const PartialPivLU<typename MatrixBase<Derived>::PlainObject>
MatrixBase<Derived>::lu() const
{
  return PartialPivLU<PlainObject>(eval());
}

} // end namespace Eigen

#endif // EIGEN_PARTIALLU_H