aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/Core/arch/Default/GenericPacketMathFunctions.h
blob: 596d8a52f3b8c5c2301a9995c6c3aa5da9844c42 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2007 Julien Pommier
// Copyright (C) 2014 Pedro Gonnet (pedro.gonnet@gmail.com)
// Copyright (C) 2009-2019 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

/* The exp and log functions of this file initially come from
 * Julien Pommier's sse math library: http://gruntthepeon.free.fr/ssemath/
 */

#ifndef EIGEN_ARCH_GENERIC_PACKET_MATH_FUNCTIONS_H
#define EIGEN_ARCH_GENERIC_PACKET_MATH_FUNCTIONS_H

namespace Eigen {
namespace internal {

// Creates a Scalar integer type with same bit-width.
template<typename T> struct make_integer;
template<> struct make_integer<float>    { typedef numext::int32_t type; };
template<> struct make_integer<double>   { typedef numext::int64_t type; };
template<> struct make_integer<half>     { typedef numext::int16_t type; };
template<> struct make_integer<bfloat16> { typedef numext::int16_t type; };

template<typename Packet> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC  
Packet pfrexp_generic_get_biased_exponent(const Packet& a) {
  typedef typename unpacket_traits<Packet>::type Scalar;
  typedef typename unpacket_traits<Packet>::integer_packet PacketI;
  enum { mantissa_bits = numext::numeric_limits<Scalar>::digits - 1};
  return pcast<PacketI, Packet>(plogical_shift_right<mantissa_bits>(preinterpret<PacketI>(pabs(a))));
}

// Safely applies frexp, correctly handles denormals.
// Assumes IEEE floating point format.
template<typename Packet> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC
Packet pfrexp_generic(const Packet& a, Packet& exponent) {
  typedef typename unpacket_traits<Packet>::type Scalar;
  typedef typename make_unsigned<typename make_integer<Scalar>::type>::type ScalarUI;
  enum {
    TotalBits = sizeof(Scalar) * CHAR_BIT,
    MantissaBits = numext::numeric_limits<Scalar>::digits - 1,
    ExponentBits = int(TotalBits) - int(MantissaBits) - 1
  };

  EIGEN_CONSTEXPR ScalarUI scalar_sign_mantissa_mask = 
      ~(((ScalarUI(1) << int(ExponentBits)) - ScalarUI(1)) << int(MantissaBits)); // ~0x7f800000
  const Packet sign_mantissa_mask = pset1frombits<Packet>(static_cast<ScalarUI>(scalar_sign_mantissa_mask)); 
  const Packet half = pset1<Packet>(Scalar(0.5));
  const Packet zero = pzero(a);
  const Packet normal_min = pset1<Packet>((numext::numeric_limits<Scalar>::min)()); // Minimum normal value, 2^-126
  
  // To handle denormals, normalize by multiplying by 2^(int(MantissaBits)+1).
  const Packet is_denormal = pcmp_lt(pabs(a), normal_min);
  EIGEN_CONSTEXPR ScalarUI scalar_normalization_offset = ScalarUI(int(MantissaBits) + 1); // 24
  // The following cannot be constexpr because bfloat16(uint16_t) is not constexpr.
  const Scalar scalar_normalization_factor = Scalar(ScalarUI(1) << int(scalar_normalization_offset)); // 2^24
  const Packet normalization_factor = pset1<Packet>(scalar_normalization_factor);  
  const Packet normalized_a = pselect(is_denormal, pmul(a, normalization_factor), a);
  
  // Determine exponent offset: -126 if normal, -126-24 if denormal
  const Scalar scalar_exponent_offset = -Scalar((ScalarUI(1)<<(int(ExponentBits)-1)) - ScalarUI(2)); // -126
  Packet exponent_offset = pset1<Packet>(scalar_exponent_offset);
  const Packet normalization_offset = pset1<Packet>(-Scalar(scalar_normalization_offset)); // -24
  exponent_offset = pselect(is_denormal, padd(exponent_offset, normalization_offset), exponent_offset);
  
  // Determine exponent and mantissa from normalized_a.
  exponent = pfrexp_generic_get_biased_exponent(normalized_a);
  // Zero, Inf and NaN return 'a' unmodified, exponent is zero
  // (technically the exponent is unspecified for inf/NaN, but GCC/Clang set it to zero)
  const Scalar scalar_non_finite_exponent = Scalar((ScalarUI(1) << int(ExponentBits)) - ScalarUI(1));  // 255
  const Packet non_finite_exponent = pset1<Packet>(scalar_non_finite_exponent);
  const Packet is_zero_or_not_finite = por(pcmp_eq(a, zero), pcmp_eq(exponent, non_finite_exponent));
  const Packet m = pselect(is_zero_or_not_finite, a, por(pand(normalized_a, sign_mantissa_mask), half));
  exponent = pselect(is_zero_or_not_finite, zero, padd(exponent, exponent_offset));  
  return m;
}

// Safely applies ldexp, correctly handles overflows, underflows and denormals.
// Assumes IEEE floating point format.
template<typename Packet> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC
Packet pldexp_generic(const Packet& a, const Packet& exponent) {
  // We want to return a * 2^exponent, allowing for all possible integer
  // exponents without overflowing or underflowing in intermediate
  // computations.
  //
  // Since 'a' and the output can be denormal, the maximum range of 'exponent'
  // to consider for a float is:
  //   -255-23 -> 255+23
  // Below -278 any finite float 'a' will become zero, and above +278 any
  // finite float will become inf, including when 'a' is the smallest possible 
  // denormal.
  //
  // Unfortunately, 2^(278) cannot be represented using either one or two
  // finite normal floats, so we must split the scale factor into at least
  // three parts. It turns out to be faster to split 'exponent' into four
  // factors, since [exponent>>2] is much faster to compute that [exponent/3].
  //
  // Set e = min(max(exponent, -278), 278);
  //     b = floor(e/4);
  //   out = ((((a * 2^(b)) * 2^(b)) * 2^(b)) * 2^(e-3*b))
  //
  // This will avoid any intermediate overflows and correctly handle 0, inf,
  // NaN cases.
  typedef typename unpacket_traits<Packet>::integer_packet PacketI;
  typedef typename unpacket_traits<Packet>::type Scalar;
  typedef typename unpacket_traits<PacketI>::type ScalarI;
  enum {
    TotalBits = sizeof(Scalar) * CHAR_BIT,
    MantissaBits = numext::numeric_limits<Scalar>::digits - 1,
    ExponentBits = int(TotalBits) - int(MantissaBits) - 1
  };

  const Packet max_exponent = pset1<Packet>(Scalar((ScalarI(1)<<int(ExponentBits)) + ScalarI(int(MantissaBits) - 1)));  // 278
  const PacketI bias = pset1<PacketI>((ScalarI(1)<<(int(ExponentBits)-1)) - ScalarI(1));  // 127
  const PacketI e = pcast<Packet, PacketI>(pmin(pmax(exponent, pnegate(max_exponent)), max_exponent));
  PacketI b = parithmetic_shift_right<2>(e); // floor(e/4);
  Packet c = preinterpret<Packet>(plogical_shift_left<int(MantissaBits)>(padd(b, bias)));  // 2^b
  Packet out = pmul(pmul(pmul(a, c), c), c);  // a * 2^(3b)
  b = psub(psub(psub(e, b), b), b); // e - 3b
  c = preinterpret<Packet>(plogical_shift_left<int(MantissaBits)>(padd(b, bias)));  // 2^(e-3*b)
  out = pmul(out, c);
  return out;
}

// Explicitly multiplies 
//    a * (2^e)
// clamping e to the range
// [NumTraits<Scalar>::min_exponent()-2, NumTraits<Scalar>::max_exponent()]
//
// This is approx 7x faster than pldexp_impl, but will prematurely over/underflow
// if 2^e doesn't fit into a normal floating-point Scalar.
//
// Assumes IEEE floating point format
template<typename Packet>
struct pldexp_fast_impl {
  typedef typename unpacket_traits<Packet>::integer_packet PacketI;
  typedef typename unpacket_traits<Packet>::type Scalar;
  typedef typename unpacket_traits<PacketI>::type ScalarI;
  enum {
    TotalBits = sizeof(Scalar) * CHAR_BIT,
    MantissaBits = numext::numeric_limits<Scalar>::digits - 1,
    ExponentBits = int(TotalBits) - int(MantissaBits) - 1
  };
  
  static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC
  Packet run(const Packet& a, const Packet& exponent) {
    const Packet bias = pset1<Packet>(Scalar((ScalarI(1)<<(int(ExponentBits)-1)) - ScalarI(1)));  // 127
    const Packet limit = pset1<Packet>(Scalar((ScalarI(1)<<int(ExponentBits)) - ScalarI(1)));     // 255
    // restrict biased exponent between 0 and 255 for float.
    const PacketI e = pcast<Packet, PacketI>(pmin(pmax(padd(exponent, bias), pzero(limit)), limit)); // exponent + 127
    // return a * (2^e)
    return pmul(a, preinterpret<Packet>(plogical_shift_left<int(MantissaBits)>(e)));
  }
};

// Natural or base 2 logarithm.
// Computes log(x) as log(2^e * m) = C*e + log(m), where the constant C =log(2)
// and m is in the range [sqrt(1/2),sqrt(2)). In this range, the logarithm can
// be easily approximated by a polynomial centered on m=1 for stability.
// TODO(gonnet): Further reduce the interval allowing for lower-degree
//               polynomial interpolants -> ... -> profit!
template <typename Packet, bool base2>
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
EIGEN_UNUSED
Packet plog_impl_float(const Packet _x)
{
  Packet x = _x;

  const Packet cst_1              = pset1<Packet>(1.0f);
  const Packet cst_neg_half       = pset1<Packet>(-0.5f);
  // The smallest non denormalized float number.
  const Packet cst_min_norm_pos   = pset1frombits<Packet>( 0x00800000u);
  const Packet cst_minus_inf      = pset1frombits<Packet>( 0xff800000u);
  const Packet cst_pos_inf        = pset1frombits<Packet>( 0x7f800000u);

  // Polynomial coefficients.
  const Packet cst_cephes_SQRTHF = pset1<Packet>(0.707106781186547524f);
  const Packet cst_cephes_log_p0 = pset1<Packet>(7.0376836292E-2f);
  const Packet cst_cephes_log_p1 = pset1<Packet>(-1.1514610310E-1f);
  const Packet cst_cephes_log_p2 = pset1<Packet>(1.1676998740E-1f);
  const Packet cst_cephes_log_p3 = pset1<Packet>(-1.2420140846E-1f);
  const Packet cst_cephes_log_p4 = pset1<Packet>(+1.4249322787E-1f);
  const Packet cst_cephes_log_p5 = pset1<Packet>(-1.6668057665E-1f);
  const Packet cst_cephes_log_p6 = pset1<Packet>(+2.0000714765E-1f);
  const Packet cst_cephes_log_p7 = pset1<Packet>(-2.4999993993E-1f);
  const Packet cst_cephes_log_p8 = pset1<Packet>(+3.3333331174E-1f);

  // Truncate input values to the minimum positive normal.
  x = pmax(x, cst_min_norm_pos);

  Packet e;
  // extract significant in the range [0.5,1) and exponent
  x = pfrexp(x,e);

  // part2: Shift the inputs from the range [0.5,1) to [sqrt(1/2),sqrt(2))
  // and shift by -1. The values are then centered around 0, which improves
  // the stability of the polynomial evaluation.
  //   if( x < SQRTHF ) {
  //     e -= 1;
  //     x = x + x - 1.0;
  //   } else { x = x - 1.0; }
  Packet mask = pcmp_lt(x, cst_cephes_SQRTHF);
  Packet tmp = pand(x, mask);
  x = psub(x, cst_1);
  e = psub(e, pand(cst_1, mask));
  x = padd(x, tmp);

  Packet x2 = pmul(x, x);
  Packet x3 = pmul(x2, x);

  // Evaluate the polynomial approximant of degree 8 in three parts, probably
  // to improve instruction-level parallelism.
  Packet y, y1, y2;
  y  = pmadd(cst_cephes_log_p0, x, cst_cephes_log_p1);
  y1 = pmadd(cst_cephes_log_p3, x, cst_cephes_log_p4);
  y2 = pmadd(cst_cephes_log_p6, x, cst_cephes_log_p7);
  y  = pmadd(y, x, cst_cephes_log_p2);
  y1 = pmadd(y1, x, cst_cephes_log_p5);
  y2 = pmadd(y2, x, cst_cephes_log_p8);
  y  = pmadd(y, x3, y1);
  y  = pmadd(y, x3, y2);
  y  = pmul(y, x3);

  y = pmadd(cst_neg_half, x2, y);
  x = padd(x, y);

  // Add the logarithm of the exponent back to the result of the interpolation.
  if (base2) {
    const Packet cst_log2e = pset1<Packet>(static_cast<float>(EIGEN_LOG2E));
    x = pmadd(x, cst_log2e, e);
  } else {
    const Packet cst_ln2 = pset1<Packet>(static_cast<float>(EIGEN_LN2));
    x = pmadd(e, cst_ln2, x);
  }

  Packet invalid_mask = pcmp_lt_or_nan(_x, pzero(_x));
  Packet iszero_mask  = pcmp_eq(_x,pzero(_x));
  Packet pos_inf_mask = pcmp_eq(_x,cst_pos_inf);
  // Filter out invalid inputs, i.e.:
  //  - negative arg will be NAN
  //  - 0 will be -INF
  //  - +INF will be +INF
  return pselect(iszero_mask, cst_minus_inf,
                              por(pselect(pos_inf_mask,cst_pos_inf,x), invalid_mask));
}

template <typename Packet>
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
EIGEN_UNUSED
Packet plog_float(const Packet _x)
{
  return plog_impl_float<Packet, /* base2 */ false>(_x);
}

template <typename Packet>
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
EIGEN_UNUSED
Packet plog2_float(const Packet _x)
{
  return plog_impl_float<Packet, /* base2 */ true>(_x);
}

/* Returns the base e (2.718...) or base 2 logarithm of x.
 * The argument is separated into its exponent and fractional parts.
 * The logarithm of the fraction in the interval [sqrt(1/2), sqrt(2)],
 * is approximated by
 *
 *     log(1+x) = x - 0.5 x**2 + x**3 P(x)/Q(x).
 *
 * for more detail see: http://www.netlib.org/cephes/
 */
template <typename Packet, bool base2>
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
EIGEN_UNUSED
Packet plog_impl_double(const Packet _x)
{
  Packet x = _x;

  const Packet cst_1              = pset1<Packet>(1.0);
  const Packet cst_neg_half       = pset1<Packet>(-0.5);
  // The smallest non denormalized double.
  const Packet cst_min_norm_pos   = pset1frombits<Packet>( static_cast<uint64_t>(0x0010000000000000ull));
  const Packet cst_minus_inf      = pset1frombits<Packet>( static_cast<uint64_t>(0xfff0000000000000ull));
  const Packet cst_pos_inf        = pset1frombits<Packet>( static_cast<uint64_t>(0x7ff0000000000000ull));


 // Polynomial Coefficients for log(1+x) = x - x**2/2 + x**3 P(x)/Q(x)
 //                             1/sqrt(2) <= x < sqrt(2)
  const Packet cst_cephes_SQRTHF = pset1<Packet>(0.70710678118654752440E0);
  const Packet cst_cephes_log_p0 = pset1<Packet>(1.01875663804580931796E-4);
  const Packet cst_cephes_log_p1 = pset1<Packet>(4.97494994976747001425E-1);
  const Packet cst_cephes_log_p2 = pset1<Packet>(4.70579119878881725854E0);
  const Packet cst_cephes_log_p3 = pset1<Packet>(1.44989225341610930846E1);
  const Packet cst_cephes_log_p4 = pset1<Packet>(1.79368678507819816313E1);
  const Packet cst_cephes_log_p5 = pset1<Packet>(7.70838733755885391666E0);

  const Packet cst_cephes_log_q0 = pset1<Packet>(1.0);
  const Packet cst_cephes_log_q1 = pset1<Packet>(1.12873587189167450590E1);
  const Packet cst_cephes_log_q2 = pset1<Packet>(4.52279145837532221105E1);
  const Packet cst_cephes_log_q3 = pset1<Packet>(8.29875266912776603211E1);
  const Packet cst_cephes_log_q4 = pset1<Packet>(7.11544750618563894466E1);
  const Packet cst_cephes_log_q5 = pset1<Packet>(2.31251620126765340583E1);

  // Truncate input values to the minimum positive normal.
  x = pmax(x, cst_min_norm_pos);

  Packet e;
  // extract significant in the range [0.5,1) and exponent
  x = pfrexp(x,e);
  
  // Shift the inputs from the range [0.5,1) to [sqrt(1/2),sqrt(2))
  // and shift by -1. The values are then centered around 0, which improves
  // the stability of the polynomial evaluation.
  //   if( x < SQRTHF ) {
  //     e -= 1;
  //     x = x + x - 1.0;
  //   } else { x = x - 1.0; }
  Packet mask = pcmp_lt(x, cst_cephes_SQRTHF);
  Packet tmp = pand(x, mask);
  x = psub(x, cst_1);
  e = psub(e, pand(cst_1, mask));
  x = padd(x, tmp);

  Packet x2 = pmul(x, x);
  Packet x3 = pmul(x2, x);

  // Evaluate the polynomial approximant , probably to improve instruction-level parallelism.
  // y = x - 0.5*x^2 + x^3 * polevl( x, P, 5 ) / p1evl( x, Q, 5 ) );
  Packet y, y1, y_;
  y  = pmadd(cst_cephes_log_p0, x, cst_cephes_log_p1);
  y1 = pmadd(cst_cephes_log_p3, x, cst_cephes_log_p4);
  y  = pmadd(y, x, cst_cephes_log_p2);
  y1 = pmadd(y1, x, cst_cephes_log_p5);
  y_ = pmadd(y, x3, y1);

  y  = pmadd(cst_cephes_log_q0, x, cst_cephes_log_q1);
  y1 = pmadd(cst_cephes_log_q3, x, cst_cephes_log_q4);
  y  = pmadd(y, x, cst_cephes_log_q2);
  y1 = pmadd(y1, x, cst_cephes_log_q5);
  y  = pmadd(y, x3, y1);

  y_ = pmul(y_, x3);
  y  = pdiv(y_, y);

  y = pmadd(cst_neg_half, x2, y);
  x = padd(x, y);

  // Add the logarithm of the exponent back to the result of the interpolation.
  if (base2) {
    const Packet cst_log2e = pset1<Packet>(static_cast<double>(EIGEN_LOG2E));
    x = pmadd(x, cst_log2e, e);
  } else {
    const Packet cst_ln2 = pset1<Packet>(static_cast<double>(EIGEN_LN2));
    x = pmadd(e, cst_ln2, x);
  }

  Packet invalid_mask = pcmp_lt_or_nan(_x, pzero(_x));
  Packet iszero_mask  = pcmp_eq(_x,pzero(_x));
  Packet pos_inf_mask = pcmp_eq(_x,cst_pos_inf);
  // Filter out invalid inputs, i.e.:
  //  - negative arg will be NAN
  //  - 0 will be -INF
  //  - +INF will be +INF
  return pselect(iszero_mask, cst_minus_inf,
                              por(pselect(pos_inf_mask,cst_pos_inf,x), invalid_mask));
}

template <typename Packet>
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
EIGEN_UNUSED
Packet plog_double(const Packet _x)
{
  return plog_impl_double<Packet, /* base2 */ false>(_x);
}

template <typename Packet>
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
EIGEN_UNUSED
Packet plog2_double(const Packet _x)
{
  return plog_impl_double<Packet, /* base2 */ true>(_x);
}

/** \internal \returns log(1 + x) computed using W. Kahan's formula.
    See: http://www.plunk.org/~hatch/rightway.php
 */
template<typename Packet>
Packet generic_plog1p(const Packet& x)
{
  typedef typename unpacket_traits<Packet>::type ScalarType;
  const Packet one = pset1<Packet>(ScalarType(1));
  Packet xp1 = padd(x, one);
  Packet small_mask = pcmp_eq(xp1, one);
  Packet log1 = plog(xp1);
  Packet inf_mask = pcmp_eq(xp1, log1);
  Packet log_large = pmul(x, pdiv(log1, psub(xp1, one)));
  return pselect(por(small_mask, inf_mask), x, log_large);
}

/** \internal \returns exp(x)-1 computed using W. Kahan's formula.
    See: http://www.plunk.org/~hatch/rightway.php
 */
template<typename Packet>
Packet generic_expm1(const Packet& x)
{
  typedef typename unpacket_traits<Packet>::type ScalarType;
  const Packet one = pset1<Packet>(ScalarType(1));
  const Packet neg_one = pset1<Packet>(ScalarType(-1));
  Packet u = pexp(x);
  Packet one_mask = pcmp_eq(u, one);
  Packet u_minus_one = psub(u, one);
  Packet neg_one_mask = pcmp_eq(u_minus_one, neg_one);
  Packet logu = plog(u);
  // The following comparison is to catch the case where
  // exp(x) = +inf. It is written in this way to avoid having
  // to form the constant +inf, which depends on the packet
  // type.
  Packet pos_inf_mask = pcmp_eq(logu, u);
  Packet expm1 = pmul(u_minus_one, pdiv(x, logu));
  expm1 = pselect(pos_inf_mask, u, expm1);
  return pselect(one_mask,
                 x,
                 pselect(neg_one_mask,
                         neg_one,
                         expm1));
}


// Exponential function. Works by writing "x = m*log(2) + r" where
// "m = floor(x/log(2)+1/2)" and "r" is the remainder. The result is then
// "exp(x) = 2^m*exp(r)" where exp(r) is in the range [-1,1).
template <typename Packet>
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
EIGEN_UNUSED
Packet pexp_float(const Packet _x)
{
  const Packet cst_1      = pset1<Packet>(1.0f);
  const Packet cst_half   = pset1<Packet>(0.5f);
  const Packet cst_exp_hi = pset1<Packet>( 88.723f);
  const Packet cst_exp_lo = pset1<Packet>(-88.723f);

  const Packet cst_cephes_LOG2EF = pset1<Packet>(1.44269504088896341f);
  const Packet cst_cephes_exp_p0 = pset1<Packet>(1.9875691500E-4f);
  const Packet cst_cephes_exp_p1 = pset1<Packet>(1.3981999507E-3f);
  const Packet cst_cephes_exp_p2 = pset1<Packet>(8.3334519073E-3f);
  const Packet cst_cephes_exp_p3 = pset1<Packet>(4.1665795894E-2f);
  const Packet cst_cephes_exp_p4 = pset1<Packet>(1.6666665459E-1f);
  const Packet cst_cephes_exp_p5 = pset1<Packet>(5.0000001201E-1f);

  // Clamp x.
  Packet x = pmax(pmin(_x, cst_exp_hi), cst_exp_lo);

  // Express exp(x) as exp(m*ln(2) + r), start by extracting
  // m = floor(x/ln(2) + 0.5).
  Packet m = pfloor(pmadd(x, cst_cephes_LOG2EF, cst_half));

  // Get r = x - m*ln(2). If no FMA instructions are available, m*ln(2) is
  // subtracted out in two parts, m*C1+m*C2 = m*ln(2), to avoid accumulating
  // truncation errors.
  const Packet cst_cephes_exp_C1 = pset1<Packet>(-0.693359375f);
  const Packet cst_cephes_exp_C2 = pset1<Packet>(2.12194440e-4f);
  Packet r = pmadd(m, cst_cephes_exp_C1, x);
  r = pmadd(m, cst_cephes_exp_C2, r);

  Packet r2 = pmul(r, r);
  Packet r3 = pmul(r2, r);

  // Evaluate the polynomial approximant,improved by instruction-level parallelism.
  Packet y, y1, y2;
  y  = pmadd(cst_cephes_exp_p0, r, cst_cephes_exp_p1);
  y1 = pmadd(cst_cephes_exp_p3, r, cst_cephes_exp_p4);
  y2 = padd(r, cst_1);
  y  = pmadd(y, r, cst_cephes_exp_p2);
  y1 = pmadd(y1, r, cst_cephes_exp_p5);
  y  = pmadd(y, r3, y1);
  y  = pmadd(y, r2, y2);

  // Return 2^m * exp(r).
  // TODO: replace pldexp with faster implementation since y in [-1, 1).
  return pmax(pldexp(y,m), _x);
}

template <typename Packet>
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
EIGEN_UNUSED
Packet pexp_double(const Packet _x)
{
  Packet x = _x;

  const Packet cst_1 = pset1<Packet>(1.0);
  const Packet cst_2 = pset1<Packet>(2.0);
  const Packet cst_half = pset1<Packet>(0.5);

  const Packet cst_exp_hi = pset1<Packet>(709.784);
  const Packet cst_exp_lo = pset1<Packet>(-709.784);

  const Packet cst_cephes_LOG2EF = pset1<Packet>(1.4426950408889634073599);
  const Packet cst_cephes_exp_p0 = pset1<Packet>(1.26177193074810590878e-4);
  const Packet cst_cephes_exp_p1 = pset1<Packet>(3.02994407707441961300e-2);
  const Packet cst_cephes_exp_p2 = pset1<Packet>(9.99999999999999999910e-1);
  const Packet cst_cephes_exp_q0 = pset1<Packet>(3.00198505138664455042e-6);
  const Packet cst_cephes_exp_q1 = pset1<Packet>(2.52448340349684104192e-3);
  const Packet cst_cephes_exp_q2 = pset1<Packet>(2.27265548208155028766e-1);
  const Packet cst_cephes_exp_q3 = pset1<Packet>(2.00000000000000000009e0);
  const Packet cst_cephes_exp_C1 = pset1<Packet>(0.693145751953125);
  const Packet cst_cephes_exp_C2 = pset1<Packet>(1.42860682030941723212e-6);

  Packet tmp, fx;

  // clamp x
  x = pmax(pmin(x, cst_exp_hi), cst_exp_lo);
  // Express exp(x) as exp(g + n*log(2)).
  fx = pmadd(cst_cephes_LOG2EF, x, cst_half);

  // Get the integer modulus of log(2), i.e. the "n" described above.
  fx = pfloor(fx);

  // Get the remainder modulo log(2), i.e. the "g" described above. Subtract
  // n*log(2) out in two steps, i.e. n*C1 + n*C2, C1+C2=log2 to get the last
  // digits right.
  tmp = pmul(fx, cst_cephes_exp_C1);
  Packet z = pmul(fx, cst_cephes_exp_C2);
  x = psub(x, tmp);
  x = psub(x, z);

  Packet x2 = pmul(x, x);

  // Evaluate the numerator polynomial of the rational interpolant.
  Packet px = cst_cephes_exp_p0;
  px = pmadd(px, x2, cst_cephes_exp_p1);
  px = pmadd(px, x2, cst_cephes_exp_p2);
  px = pmul(px, x);

  // Evaluate the denominator polynomial of the rational interpolant.
  Packet qx = cst_cephes_exp_q0;
  qx = pmadd(qx, x2, cst_cephes_exp_q1);
  qx = pmadd(qx, x2, cst_cephes_exp_q2);
  qx = pmadd(qx, x2, cst_cephes_exp_q3);

  // I don't really get this bit, copied from the SSE2 routines, so...
  // TODO(gonnet): Figure out what is going on here, perhaps find a better
  // rational interpolant?
  x = pdiv(px, psub(qx, px));
  x = pmadd(cst_2, x, cst_1);

  // Construct the result 2^n * exp(g) = e * x. The max is used to catch
  // non-finite values in the input.
  // TODO: replace pldexp with faster implementation since x in [-1, 1).
  return pmax(pldexp(x,fx), _x);
}

// The following code is inspired by the following stack-overflow answer:
//   https://stackoverflow.com/questions/30463616/payne-hanek-algorithm-implementation-in-c/30465751#30465751
// It has been largely optimized:
//  - By-pass calls to frexp.
//  - Aligned loads of required 96 bits of 2/pi. This is accomplished by
//    (1) balancing the mantissa and exponent to the required bits of 2/pi are
//    aligned on 8-bits, and (2) replicating the storage of the bits of 2/pi.
//  - Avoid a branch in rounding and extraction of the remaining fractional part.
// Overall, I measured a speed up higher than x2 on x86-64.
inline float trig_reduce_huge (float xf, int *quadrant)
{
  using Eigen::numext::int32_t;
  using Eigen::numext::uint32_t;
  using Eigen::numext::int64_t;
  using Eigen::numext::uint64_t;

  const double pio2_62 = 3.4061215800865545e-19;    // pi/2 * 2^-62
  const uint64_t zero_dot_five = uint64_t(1) << 61; // 0.5 in 2.62-bit fixed-point foramt

  // 192 bits of 2/pi for Payne-Hanek reduction
  // Bits are introduced by packet of 8 to enable aligned reads.
  static const uint32_t two_over_pi [] = 
  {
    0x00000028, 0x000028be, 0x0028be60, 0x28be60db,
    0xbe60db93, 0x60db9391, 0xdb939105, 0x9391054a,
    0x91054a7f, 0x054a7f09, 0x4a7f09d5, 0x7f09d5f4,
    0x09d5f47d, 0xd5f47d4d, 0xf47d4d37, 0x7d4d3770,
    0x4d377036, 0x377036d8, 0x7036d8a5, 0x36d8a566,
    0xd8a5664f, 0xa5664f10, 0x664f10e4, 0x4f10e410,
    0x10e41000, 0xe4100000
  };
  
  uint32_t xi = numext::bit_cast<uint32_t>(xf);
  // Below, -118 = -126 + 8.
  //   -126 is to get the exponent,
  //   +8 is to enable alignment of 2/pi's bits on 8 bits.
  // This is possible because the fractional part of x as only 24 meaningful bits.
  uint32_t e = (xi >> 23) - 118;
  // Extract the mantissa and shift it to align it wrt the exponent
  xi = ((xi & 0x007fffffu)| 0x00800000u) << (e & 0x7);

  uint32_t i = e >> 3;
  uint32_t twoopi_1  = two_over_pi[i-1];
  uint32_t twoopi_2  = two_over_pi[i+3];
  uint32_t twoopi_3  = two_over_pi[i+7];

  // Compute x * 2/pi in 2.62-bit fixed-point format.
  uint64_t p;
  p = uint64_t(xi) * twoopi_3;
  p = uint64_t(xi) * twoopi_2 + (p >> 32);
  p = (uint64_t(xi * twoopi_1) << 32) + p;

  // Round to nearest: add 0.5 and extract integral part.
  uint64_t q = (p + zero_dot_five) >> 62;
  *quadrant = int(q);
  // Now it remains to compute "r = x - q*pi/2" with high accuracy,
  // since we have p=x/(pi/2) with high accuracy, we can more efficiently compute r as:
  //   r = (p-q)*pi/2,
  // where the product can be be carried out with sufficient accuracy using double precision.
  p -= q<<62;
  return float(double(int64_t(p)) * pio2_62);
}

template<bool ComputeSine,typename Packet>
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
EIGEN_UNUSED
#if EIGEN_GNUC_AT_LEAST(4,4) && EIGEN_COMP_GNUC_STRICT
__attribute__((optimize("-fno-unsafe-math-optimizations")))
#endif
Packet psincos_float(const Packet& _x)
{
  typedef typename unpacket_traits<Packet>::integer_packet PacketI;

  const Packet  cst_2oPI            = pset1<Packet>(0.636619746685028076171875f); // 2/PI
  const Packet  cst_rounding_magic  = pset1<Packet>(12582912); // 2^23 for rounding
  const PacketI csti_1              = pset1<PacketI>(1);
  const Packet  cst_sign_mask       = pset1frombits<Packet>(0x80000000u);

  Packet x = pabs(_x);

  // Scale x by 2/Pi to find x's octant.
  Packet y = pmul(x, cst_2oPI);

  // Rounding trick:
  Packet y_round = padd(y, cst_rounding_magic);
  EIGEN_OPTIMIZATION_BARRIER(y_round)
  PacketI y_int = preinterpret<PacketI>(y_round); // last 23 digits represent integer (if abs(x)<2^24)
  y = psub(y_round, cst_rounding_magic); // nearest integer to x*4/pi

  // Reduce x by y octants to get: -Pi/4 <= x <= +Pi/4
  // using "Extended precision modular arithmetic"
  #if defined(EIGEN_HAS_SINGLE_INSTRUCTION_MADD)
  // This version requires true FMA for high accuracy
  // It provides a max error of 1ULP up to (with absolute_error < 5.9605e-08):
  const float huge_th = ComputeSine ? 117435.992f : 71476.0625f;
  x = pmadd(y, pset1<Packet>(-1.57079601287841796875f), x);
  x = pmadd(y, pset1<Packet>(-3.1391647326017846353352069854736328125e-07f), x);
  x = pmadd(y, pset1<Packet>(-5.390302529957764765544681040410068817436695098876953125e-15f), x);
  #else
  // Without true FMA, the previous set of coefficients maintain 1ULP accuracy
  // up to x<15.7 (for sin), but accuracy is immediately lost for x>15.7.
  // We thus use one more iteration to maintain 2ULPs up to reasonably large inputs.

  // The following set of coefficients maintain 1ULP up to 9.43 and 14.16 for sin and cos respectively.
  // and 2 ULP up to:
  const float huge_th = ComputeSine ? 25966.f : 18838.f;
  x = pmadd(y, pset1<Packet>(-1.5703125), x); // = 0xbfc90000
  EIGEN_OPTIMIZATION_BARRIER(x)
  x = pmadd(y, pset1<Packet>(-0.000483989715576171875), x); // = 0xb9fdc000
  EIGEN_OPTIMIZATION_BARRIER(x)
  x = pmadd(y, pset1<Packet>(1.62865035235881805419921875e-07), x); // = 0x342ee000
  x = pmadd(y, pset1<Packet>(5.5644315544167710640977020375430583953857421875e-11), x); // = 0x2e74b9ee

  // For the record, the following set of coefficients maintain 2ULP up
  // to a slightly larger range:
  // const float huge_th = ComputeSine ? 51981.f : 39086.125f;
  // but it slightly fails to maintain 1ULP for two values of sin below pi.
  // x = pmadd(y, pset1<Packet>(-3.140625/2.), x);
  // x = pmadd(y, pset1<Packet>(-0.00048351287841796875), x);
  // x = pmadd(y, pset1<Packet>(-3.13855707645416259765625e-07), x);
  // x = pmadd(y, pset1<Packet>(-6.0771006282767103812147979624569416046142578125e-11), x);

  // For the record, with only 3 iterations it is possible to maintain
  // 1 ULP up to 3PI (maybe more) and 2ULP up to 255.
  // The coefficients are: 0xbfc90f80, 0xb7354480, 0x2e74b9ee
  #endif

  if(predux_any(pcmp_le(pset1<Packet>(huge_th),pabs(_x))))
  {
    const int PacketSize = unpacket_traits<Packet>::size;
    EIGEN_ALIGN_TO_BOUNDARY(sizeof(Packet)) float vals[PacketSize];
    EIGEN_ALIGN_TO_BOUNDARY(sizeof(Packet)) float x_cpy[PacketSize];
    EIGEN_ALIGN_TO_BOUNDARY(sizeof(Packet)) int y_int2[PacketSize];
    pstoreu(vals, pabs(_x));
    pstoreu(x_cpy, x);
    pstoreu(y_int2, y_int);
    for(int k=0; k<PacketSize;++k)
    {
      float val = vals[k];
      if(val>=huge_th && (numext::isfinite)(val))
        x_cpy[k] = trig_reduce_huge(val,&y_int2[k]);
    }
    x = ploadu<Packet>(x_cpy);
    y_int = ploadu<PacketI>(y_int2);
  }

  // Compute the sign to apply to the polynomial.
  // sin: sign = second_bit(y_int) xor signbit(_x)
  // cos: sign = second_bit(y_int+1)
  Packet sign_bit = ComputeSine ? pxor(_x, preinterpret<Packet>(plogical_shift_left<30>(y_int)))
                                : preinterpret<Packet>(plogical_shift_left<30>(padd(y_int,csti_1)));
  sign_bit = pand(sign_bit, cst_sign_mask); // clear all but left most bit

  // Get the polynomial selection mask from the second bit of y_int
  // We'll calculate both (sin and cos) polynomials and then select from the two.
  Packet poly_mask = preinterpret<Packet>(pcmp_eq(pand(y_int, csti_1), pzero(y_int)));

  Packet x2 = pmul(x,x);

  // Evaluate the cos(x) polynomial. (-Pi/4 <= x <= Pi/4)
  Packet y1 =        pset1<Packet>(2.4372266125283204019069671630859375e-05f);
  y1 = pmadd(y1, x2, pset1<Packet>(-0.00138865201734006404876708984375f     ));
  y1 = pmadd(y1, x2, pset1<Packet>(0.041666619479656219482421875f           ));
  y1 = pmadd(y1, x2, pset1<Packet>(-0.5f));
  y1 = pmadd(y1, x2, pset1<Packet>(1.f));

  // Evaluate the sin(x) polynomial. (Pi/4 <= x <= Pi/4)
  // octave/matlab code to compute those coefficients:
  //    x = (0:0.0001:pi/4)';
  //    A = [x.^3 x.^5 x.^7];
  //    w = ((1.-(x/(pi/4)).^2).^5)*2000+1;         # weights trading relative accuracy
  //    c = (A'*diag(w)*A)\(A'*diag(w)*(sin(x)-x)); # weighted LS, linear coeff forced to 1
  //    printf('%.64f\n %.64f\n%.64f\n', c(3), c(2), c(1))
  //
  Packet y2 =        pset1<Packet>(-0.0001959234114083702898469196984621021329076029360294342041015625f);
  y2 = pmadd(y2, x2, pset1<Packet>( 0.0083326873655616851693794799871284340042620897293090820312500000f));
  y2 = pmadd(y2, x2, pset1<Packet>(-0.1666666203982298255503735617821803316473960876464843750000000000f));
  y2 = pmul(y2, x2);
  y2 = pmadd(y2, x, x);

  // Select the correct result from the two polynomials.
  y = ComputeSine ? pselect(poly_mask,y2,y1)
                  : pselect(poly_mask,y1,y2);

  // Update the sign and filter huge inputs
  return pxor(y, sign_bit);
}

template<typename Packet>
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
EIGEN_UNUSED
Packet psin_float(const Packet& x)
{
  return psincos_float<true>(x);
}

template<typename Packet>
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
EIGEN_UNUSED
Packet pcos_float(const Packet& x)
{
  return psincos_float<false>(x);
}

template<typename Packet>
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
EIGEN_UNUSED Packet pdiv_complex(const Packet& x, const Packet& y) {
  typedef typename unpacket_traits<Packet>::as_real RealPacket;
  // In the following we annotate the code for the case where the inputs
  // are a pair length-2 SIMD vectors representing a single pair of complex
  // numbers x = a + i*b, y = c + i*d.
  const RealPacket y_abs = pabs(y.v);  // |c|, |d|
  const RealPacket y_abs_flip = pcplxflip(Packet(y_abs)).v; // |d|, |c|
  const RealPacket y_max = pmax(y_abs, y_abs_flip); // max(|c|, |d|), max(|c|, |d|)
  const RealPacket y_scaled = pdiv(y.v, y_max);  // c / max(|c|, |d|), d / max(|c|, |d|)
  // Compute scaled denominator.
  const RealPacket y_scaled_sq = pmul(y_scaled, y_scaled); // c'**2, d'**2
  const RealPacket denom = padd(y_scaled_sq, pcplxflip(Packet(y_scaled_sq)).v);
  Packet result_scaled = pmul(x, pconj(Packet(y_scaled)));  // a * c' + b * d', -a * d + b * c
  // Divide elementwise by denom.
  result_scaled = Packet(pdiv(result_scaled.v, denom));
  // Rescale result
  return Packet(pdiv(result_scaled.v, y_max));
}

template<typename Packet>
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
EIGEN_UNUSED
Packet psqrt_complex(const Packet& a) {
  typedef typename unpacket_traits<Packet>::type Scalar;
  typedef typename Scalar::value_type RealScalar;
  typedef typename unpacket_traits<Packet>::as_real RealPacket;

  // Computes the principal sqrt of the complex numbers in the input.
  //
  // For example, for packets containing 2 complex numbers stored in interleaved format
  //    a = [a0, a1] = [x0, y0, x1, y1],
  // where x0 = real(a0), y0 = imag(a0) etc., this function returns
  //    b = [b0, b1] = [u0, v0, u1, v1],
  // such that b0^2 = a0, b1^2 = a1.
  //
  // To derive the formula for the complex square roots, let's consider the equation for
  // a single complex square root of the number x + i*y. We want to find real numbers
  // u and v such that
  //    (u + i*v)^2 = x + i*y  <=>
  //    u^2 - v^2 + i*2*u*v = x + i*v.
  // By equating the real and imaginary parts we get:
  //    u^2 - v^2 = x
  //    2*u*v = y.
  //
  // For x >= 0, this has the numerically stable solution
  //    u = sqrt(0.5 * (x + sqrt(x^2 + y^2)))
  //    v = 0.5 * (y / u)
  // and for x < 0,
  //    v = sign(y) * sqrt(0.5 * (-x + sqrt(x^2 + y^2)))
  //    u = 0.5 * (y / v)
  //
  //  To avoid unnecessary over- and underflow, we compute sqrt(x^2 + y^2) as
  //     l = max(|x|, |y|) * sqrt(1 + (min(|x|, |y|) / max(|x|, |y|))^2) ,

  // In the following, without lack of generality, we have annotated the code, assuming
  // that the input is a packet of 2 complex numbers.
  //
  // Step 1. Compute l = [l0, l0, l1, l1], where
  //    l0 = sqrt(x0^2 + y0^2),  l1 = sqrt(x1^2 + y1^2)
  // To avoid over- and underflow, we use the stable formula for each hypotenuse
  //    l0 = (min0 == 0 ? max0 : max0 * sqrt(1 + (min0/max0)**2)),
  // where max0 = max(|x0|, |y0|), min0 = min(|x0|, |y0|), and similarly for l1.

  RealPacket a_abs = pabs(a.v);           // [|x0|, |y0|, |x1|, |y1|]
  RealPacket a_abs_flip = pcplxflip(Packet(a_abs)).v; // [|y0|, |x0|, |y1|, |x1|]
  RealPacket a_max = pmax(a_abs, a_abs_flip);
  RealPacket a_min = pmin(a_abs, a_abs_flip);
  RealPacket a_min_zero_mask = pcmp_eq(a_min, pzero(a_min));
  RealPacket a_max_zero_mask = pcmp_eq(a_max, pzero(a_max));
  RealPacket r = pdiv(a_min, a_max);
  const RealPacket cst_one  = pset1<RealPacket>(RealScalar(1));
  RealPacket l = pmul(a_max, psqrt(padd(cst_one, pmul(r, r))));  // [l0, l0, l1, l1]
  // Set l to a_max if a_min is zero.
  l = pselect(a_min_zero_mask, a_max, l);

  // Step 2. Compute [rho0, *, rho1, *], where
  // rho0 = sqrt(0.5 * (l0 + |x0|)), rho1 =  sqrt(0.5 * (l1 + |x1|))
  // We don't care about the imaginary parts computed here. They will be overwritten later.
  const RealPacket cst_half = pset1<RealPacket>(RealScalar(0.5));
  Packet rho;
  rho.v = psqrt(pmul(cst_half, padd(a_abs, l)));

  // Step 3. Compute [rho0, eta0, rho1, eta1], where
  // eta0 = (y0 / l0) / 2, and eta1 = (y1 / l1) / 2.
  // set eta = 0 of input is 0 + i0.
  RealPacket eta = pandnot(pmul(cst_half, pdiv(a.v, pcplxflip(rho).v)), a_max_zero_mask);
  RealPacket real_mask = peven_mask(a.v);
  Packet positive_real_result;
  // Compute result for inputs with positive real part.
  positive_real_result.v = pselect(real_mask, rho.v, eta);

  // Step 4. Compute solution for inputs with negative real part:
  //         [|eta0|, sign(y0)*rho0, |eta1|, sign(y1)*rho1]
  const RealScalar neg_zero = RealScalar(numext::bit_cast<float>(0x80000000u));
  const RealPacket cst_imag_sign_mask = pset1<Packet>(Scalar(RealScalar(0.0), neg_zero)).v;
  RealPacket imag_signs = pand(a.v, cst_imag_sign_mask);
  Packet negative_real_result;
  // Notice that rho is positive, so taking it's absolute value is a noop.
  negative_real_result.v = por(pabs(pcplxflip(positive_real_result).v), imag_signs);

  // Step 5. Select solution branch based on the sign of the real parts.
  Packet negative_real_mask;
  negative_real_mask.v = pcmp_lt(pand(real_mask, a.v), pzero(a.v));
  negative_real_mask.v = por(negative_real_mask.v, pcplxflip(negative_real_mask).v);
  Packet result = pselect(negative_real_mask, negative_real_result, positive_real_result);

  // Step 6. Handle special cases for infinities:
  // * If z is (x,+∞), the result is (+∞,+∞) even if x is NaN
  // * If z is (x,-∞), the result is (+∞,-∞) even if x is NaN
  // * If z is (-∞,y), the result is (0*|y|,+∞) for finite or NaN y
  // * If z is (+∞,y), the result is (+∞,0*|y|) for finite or NaN y
  const RealPacket cst_pos_inf = pset1<RealPacket>(NumTraits<RealScalar>::infinity());
  Packet is_inf;
  is_inf.v = pcmp_eq(a_abs, cst_pos_inf);
  Packet is_real_inf;
  is_real_inf.v = pand(is_inf.v, real_mask);
  is_real_inf = por(is_real_inf, pcplxflip(is_real_inf));
  // prepare packet of (+∞,0*|y|) or (0*|y|,+∞), depending on the sign of the infinite real part.
  Packet real_inf_result;
  real_inf_result.v = pmul(a_abs, pset1<Packet>(Scalar(RealScalar(1.0), RealScalar(0.0))).v);
  real_inf_result.v = pselect(negative_real_mask.v, pcplxflip(real_inf_result).v, real_inf_result.v);
  // prepare packet of (+∞,+∞) or (+∞,-∞), depending on the sign of the infinite imaginary part.
  Packet is_imag_inf;
  is_imag_inf.v = pandnot(is_inf.v, real_mask);
  is_imag_inf = por(is_imag_inf, pcplxflip(is_imag_inf));
  Packet imag_inf_result;
  imag_inf_result.v = por(pand(cst_pos_inf, real_mask), pandnot(a.v, real_mask));

  return  pselect(is_imag_inf, imag_inf_result,
                  pselect(is_real_inf, real_inf_result,result));
}

// TODO(rmlarsen): The following set of utilities for double word arithmetic
// should perhaps be refactored as a separate file, since it would be generally
// useful for special function implementation etc. Writing the algorithms in
// terms if a double word type would also make the code more readable.

// This function splits x into the nearest integer n and fractional part r,
// such that x = n + r holds exactly.
template<typename Packet>
EIGEN_STRONG_INLINE
void absolute_split(const Packet& x, Packet& n, Packet& r) {
  n = pround(x);
  r = psub(x, n);
}

// This function computes the sum {s, r}, such that x + y = s_hi + s_lo
// holds exactly, and s_hi = fl(x+y), if |x| >= |y|.
template<typename Packet>
EIGEN_STRONG_INLINE
void fast_twosum(const Packet& x, const Packet& y, Packet& s_hi, Packet& s_lo) {
  s_hi = padd(x, y);
  const Packet t = psub(s_hi, x);
  s_lo = psub(y, t);
}

#ifdef EIGEN_HAS_SINGLE_INSTRUCTION_MADD
// This function implements the extended precision product of
// a pair of floating point numbers. Given {x, y}, it computes the pair
// {p_hi, p_lo} such that x * y = p_hi + p_lo holds exactly and
// p_hi = fl(x * y).
template<typename Packet>
EIGEN_STRONG_INLINE
void twoprod(const Packet& x, const Packet& y,
             Packet& p_hi, Packet& p_lo) {
  p_hi = pmul(x, y);
  p_lo = pmadd(x, y, pnegate(p_hi));
}

#else

// This function implements the Veltkamp splitting. Given a floating point
// number x it returns the pair {x_hi, x_lo} such that x_hi + x_lo = x holds
// exactly and that half of the significant of x fits in x_hi.
// This is Algorithm 3 from Jean-Michel Muller, "Elementary Functions",
// 3rd edition, Birkh\"auser, 2016.
template<typename Packet>
EIGEN_STRONG_INLINE
void veltkamp_splitting(const Packet& x, Packet& x_hi, Packet& x_lo) {
  typedef typename unpacket_traits<Packet>::type Scalar;
  EIGEN_CONSTEXPR int shift = (NumTraits<Scalar>::digits() + 1) / 2;
  const Scalar shift_scale = Scalar(uint64_t(1) << shift);  // Scalar constructor not necessarily constexpr.
  const Packet gamma = pmul(pset1<Packet>(shift_scale + Scalar(1)), x);
  Packet rho = psub(x, gamma);
  x_hi = padd(rho, gamma);
  x_lo = psub(x, x_hi);
}

// This function implements Dekker's algorithm for products x * y.
// Given floating point numbers {x, y} computes the pair
// {p_hi, p_lo} such that x * y = p_hi + p_lo holds exactly and
// p_hi = fl(x * y).
template<typename Packet>
EIGEN_STRONG_INLINE
void twoprod(const Packet& x, const Packet& y,
             Packet& p_hi, Packet& p_lo) {
  Packet x_hi, x_lo, y_hi, y_lo;
  veltkamp_splitting(x, x_hi, x_lo);
  veltkamp_splitting(y, y_hi, y_lo);

  p_hi = pmul(x, y);
  p_lo = pmadd(x_hi, y_hi, pnegate(p_hi));
  p_lo = pmadd(x_hi, y_lo, p_lo);
  p_lo = pmadd(x_lo, y_hi, p_lo);
  p_lo = pmadd(x_lo, y_lo, p_lo);
}

#endif  // EIGEN_HAS_SINGLE_INSTRUCTION_MADD


// This function implements Dekker's algorithm for the addition
// of two double word numbers represented by {x_hi, x_lo} and {y_hi, y_lo}.
// It returns the result as a pair {s_hi, s_lo} such that
// x_hi + x_lo + y_hi + y_lo = s_hi + s_lo holds exactly.
// This is Algorithm 5 from Jean-Michel Muller, "Elementary Functions",
// 3rd edition, Birkh\"auser, 2016.
template<typename Packet>
EIGEN_STRONG_INLINE
  void twosum(const Packet& x_hi, const Packet& x_lo,
              const Packet& y_hi, const Packet& y_lo,
              Packet& s_hi, Packet& s_lo) {
  const Packet x_greater_mask = pcmp_lt(pabs(y_hi), pabs(x_hi));
  Packet r_hi_1, r_lo_1;
  fast_twosum(x_hi, y_hi,r_hi_1, r_lo_1);
  Packet r_hi_2, r_lo_2;
  fast_twosum(y_hi, x_hi,r_hi_2, r_lo_2);
  const Packet r_hi = pselect(x_greater_mask, r_hi_1, r_hi_2);

  const Packet s1 = padd(padd(y_lo, r_lo_1), x_lo);
  const Packet s2 = padd(padd(x_lo, r_lo_2), y_lo);
  const Packet s = pselect(x_greater_mask, s1, s2);

  fast_twosum(r_hi, s, s_hi, s_lo);
}

// This is a version of twosum for double word numbers,
// which assumes that |x_hi| >= |y_hi|.
template<typename Packet>
EIGEN_STRONG_INLINE
  void fast_twosum(const Packet& x_hi, const Packet& x_lo,
              const Packet& y_hi, const Packet& y_lo,
              Packet& s_hi, Packet& s_lo) {
  Packet r_hi, r_lo;
  fast_twosum(x_hi, y_hi, r_hi, r_lo);
  const Packet s = padd(padd(y_lo, r_lo), x_lo);
  fast_twosum(r_hi, s, s_hi, s_lo);
}

// This is a version of twosum for adding a floating point number x to
// double word number {y_hi, y_lo} number, with the assumption
// that |x| >= |y_hi|.
template<typename Packet>
EIGEN_STRONG_INLINE
void fast_twosum(const Packet& x,
                 const Packet& y_hi, const Packet& y_lo,
                 Packet& s_hi, Packet& s_lo) {
  Packet r_hi, r_lo;
  fast_twosum(x, y_hi, r_hi, r_lo);
  const Packet s = padd(y_lo, r_lo);
  fast_twosum(r_hi, s, s_hi, s_lo);
}

// This function implements the multiplication of a double word
// number represented by {x_hi, x_lo} by a floating point number y.
// It returns the result as a pair {p_hi, p_lo} such that
// (x_hi + x_lo) * y = p_hi + p_lo hold with a relative error
// of less than 2*2^{-2p}, where p is the number of significand bit
// in the floating point type.
// This is Algorithm 7 from Jean-Michel Muller, "Elementary Functions",
// 3rd edition, Birkh\"auser, 2016.
template<typename Packet>
EIGEN_STRONG_INLINE
void twoprod(const Packet& x_hi, const Packet& x_lo, const Packet& y,
             Packet& p_hi, Packet& p_lo) {
  Packet c_hi, c_lo1;
  twoprod(x_hi, y, c_hi, c_lo1);
  const Packet c_lo2 = pmul(x_lo, y);
  Packet t_hi, t_lo1;
  fast_twosum(c_hi, c_lo2, t_hi, t_lo1);
  const Packet t_lo2 = padd(t_lo1, c_lo1);
  fast_twosum(t_hi, t_lo2, p_hi, p_lo);
}

// This function implements the multiplication of two double word
// numbers represented by {x_hi, x_lo} and {y_hi, y_lo}.
// It returns the result as a pair {p_hi, p_lo} such that
// (x_hi + x_lo) * (y_hi + y_lo) = p_hi + p_lo holds with a relative error
// of less than 2*2^{-2p}, where p is the number of significand bit
// in the floating point type.
template<typename Packet>
EIGEN_STRONG_INLINE
void twoprod(const Packet& x_hi, const Packet& x_lo,
             const Packet& y_hi, const Packet& y_lo,
             Packet& p_hi, Packet& p_lo) {
  Packet p_hi_hi, p_hi_lo;
  twoprod(x_hi, x_lo, y_hi, p_hi_hi, p_hi_lo);
  Packet p_lo_hi, p_lo_lo;
  twoprod(x_hi, x_lo, y_lo, p_lo_hi, p_lo_lo);
  fast_twosum(p_hi_hi, p_hi_lo, p_lo_hi, p_lo_lo, p_hi, p_lo);
}

// This function computes the reciprocal of a floating point number
// with extra precision and returns the result as a double word.
template <typename Packet>
void doubleword_reciprocal(const Packet& x, Packet& recip_hi, Packet& recip_lo) {
  typedef typename unpacket_traits<Packet>::type Scalar;
  // 1. Approximate the reciprocal as the reciprocal of the high order element.
  Packet approx_recip = prsqrt(x);
  approx_recip = pmul(approx_recip, approx_recip);

  // 2. Run one step of Newton-Raphson iteration in double word arithmetic
  // to get the bottom half. The NR iteration for reciprocal of 'a' is
  //    x_{i+1} = x_i * (2 - a * x_i)

  // -a*x_i
  Packet t1_hi, t1_lo;
  twoprod(pnegate(x), approx_recip, t1_hi, t1_lo);
  // 2 - a*x_i
  Packet t2_hi, t2_lo;
  fast_twosum(pset1<Packet>(Scalar(2)), t1_hi, t2_hi, t2_lo);
  Packet t3_hi, t3_lo;
  fast_twosum(t2_hi, padd(t2_lo, t1_lo), t3_hi, t3_lo);
  // x_i * (2 - a * x_i)
  twoprod(t3_hi, t3_lo, approx_recip, recip_hi, recip_lo);
}


// This function computes log2(x) and returns the result as a double word.
template <typename Scalar>
struct accurate_log2 {
  template <typename Packet>
  EIGEN_STRONG_INLINE
  void operator()(const Packet& x, Packet& log2_x_hi, Packet& log2_x_lo) {
    log2_x_hi = plog2(x);
    log2_x_lo = pzero(x);
  }
};

// This specialization uses a more accurate algorithm to compute log2(x) for
// floats in [1/sqrt(2);sqrt(2)] with a relative accuracy of ~6.42e-10.
// This additional accuracy is needed to counter the error-magnification
// inherent in multiplying by a potentially large exponent in pow(x,y).
// The minimax polynomial used was calculated using the Sollya tool.
// See sollya.org.
template <>
struct accurate_log2<float> {
  template <typename Packet>
  EIGEN_STRONG_INLINE
  void operator()(const Packet& z, Packet& log2_x_hi, Packet& log2_x_lo) {
    // The function log(1+x)/x is approximated in the interval
    // [1/sqrt(2)-1;sqrt(2)-1] by a degree 10 polynomial of the form
    //  Q(x) = (C0 + x * (C1 + x * (C2 + x * (C3 + x * P(x))))),
    // where the degree 6 polynomial P(x) is evaluated in single precision,
    // while the remaining 4 terms of Q(x), as well as the final multiplication by x
    // to reconstruct log(1+x) are evaluated in extra precision using
    // double word arithmetic. C0 through C3 are extra precise constants
    // stored as double words.
    //
    // The polynomial coefficients were calculated using Sollya commands:
    // > n = 10;
    // > f = log2(1+x)/x;
    // > interval = [sqrt(0.5)-1;sqrt(2)-1];
    // > p = fpminimax(f,n,[|double,double,double,double,single...|],interval,relative,floating);
    
    const Packet p6 = pset1<Packet>( 9.703654795885e-2f);
    const Packet p5 = pset1<Packet>(-0.1690667718648f);
    const Packet p4 = pset1<Packet>( 0.1720575392246f);
    const Packet p3 = pset1<Packet>(-0.1789081543684f);
    const Packet p2 = pset1<Packet>( 0.2050433009862f);
    const Packet p1 = pset1<Packet>(-0.2404672354459f);
    const Packet p0 = pset1<Packet>( 0.2885761857032f);

    const Packet C3_hi = pset1<Packet>(-0.360674142838f);
    const Packet C3_lo = pset1<Packet>(-6.13283912543e-09f);
    const Packet C2_hi = pset1<Packet>(0.480897903442f);
    const Packet C2_lo = pset1<Packet>(-1.44861207474e-08f);
    const Packet C1_hi = pset1<Packet>(-0.721347510815f);
    const Packet C1_lo = pset1<Packet>(-4.84483164698e-09f);
    const Packet C0_hi = pset1<Packet>(1.44269502163f);
    const Packet C0_lo = pset1<Packet>(2.01711713999e-08f);
    const Packet one = pset1<Packet>(1.0f);

    const Packet x = psub(z, one);
    // Evaluate P(x) in working precision.
    // We evaluate it in multiple parts to improve instruction level
    // parallelism.
    Packet x2 = pmul(x,x);
    Packet p_even = pmadd(p6, x2, p4);
    p_even = pmadd(p_even, x2, p2);
    p_even = pmadd(p_even, x2, p0);
    Packet p_odd = pmadd(p5, x2, p3);
    p_odd = pmadd(p_odd, x2, p1);
    Packet p = pmadd(p_odd, x, p_even);

    // Now evaluate the low-order tems of Q(x) in double word precision.
    // In the following, due to the alternating signs and the fact that
    // |x| < sqrt(2)-1, we can assume that |C*_hi| >= q_i, and use
    // fast_twosum instead of the slower twosum.
    Packet q_hi, q_lo;
    Packet t_hi, t_lo;
    // C3 + x * p(x)
    twoprod(p, x, t_hi, t_lo);
    fast_twosum(C3_hi, C3_lo, t_hi, t_lo, q_hi, q_lo);
    // C2 + x * p(x)
    twoprod(q_hi, q_lo, x, t_hi, t_lo);
    fast_twosum(C2_hi, C2_lo, t_hi, t_lo, q_hi, q_lo);
    // C1 + x * p(x)
    twoprod(q_hi, q_lo, x, t_hi, t_lo);
    fast_twosum(C1_hi, C1_lo, t_hi, t_lo, q_hi, q_lo);
    // C0 + x * p(x)
    twoprod(q_hi, q_lo, x, t_hi, t_lo);
    fast_twosum(C0_hi, C0_lo, t_hi, t_lo, q_hi, q_lo);

    // log(z) ~= x * Q(x)
    twoprod(q_hi, q_lo, x, log2_x_hi, log2_x_lo);
  }
};

// This specialization uses a more accurate algorithm to compute log2(x) for
// floats in [1/sqrt(2);sqrt(2)] with a relative accuracy of ~1.27e-18.
// This additional accuracy is needed to counter the error-magnification
// inherent in multiplying by a potentially large exponent in pow(x,y).
// The minimax polynomial used was calculated using the Sollya tool.
// See sollya.org.

template <>
struct accurate_log2<double> {
  template <typename Packet>
  EIGEN_STRONG_INLINE
  void operator()(const Packet& x, Packet& log2_x_hi, Packet& log2_x_lo) {
    // We use a transformation of variables:
    //    r = c * (x-1) / (x+1),
    // such that
    //    log2(x) = log2((1 + r/c) / (1 - r/c)) = f(r).
    // The function f(r) can be approximated well using an odd polynomial
    // of the form
    //   P(r) = ((Q(r^2) * r^2 + C) * r^2 + 1) * r,
    // For the implementation of log2<double> here, Q is of degree 6 with
    // coefficient represented in working precision (double), while C is a
    // constant represented in extra precision as a double word to achieve
    // full accuracy.
    //
    // The polynomial coefficients were computed by the Sollya script:
    //
    // c = 2 / log(2);
    // trans = c * (x-1)/(x+1);
    // itrans = (1+x/c)/(1-x/c);
    // interval=[trans(sqrt(0.5)); trans(sqrt(2))];
    // print(interval);
    // f = log2(itrans(x));
    // p=fpminimax(f,[|1,3,5,7,9,11,13,15,17|],[|1,DD,double...|],interval,relative,floating);
    const Packet q12 = pset1<Packet>(2.87074255468000586e-9);
    const Packet q10 = pset1<Packet>(2.38957980901884082e-8);
    const Packet q8 = pset1<Packet>(2.31032094540014656e-7);
    const Packet q6 = pset1<Packet>(2.27279857398537278e-6);
    const Packet q4 = pset1<Packet>(2.31271023278625638e-5);
    const Packet q2 = pset1<Packet>(2.47556738444535513e-4);
    const Packet q0 = pset1<Packet>(2.88543873228900172e-3);
    const Packet C_hi = pset1<Packet>(0.0400377511598501157);
    const Packet C_lo = pset1<Packet>(-4.77726582251425391e-19);
    const Packet one = pset1<Packet>(1.0);

    const Packet cst_2_log2e_hi = pset1<Packet>(2.88539008177792677);
    const Packet cst_2_log2e_lo = pset1<Packet>(4.07660016854549667e-17);
    // c * (x - 1)
    Packet num_hi, num_lo;
    twoprod(cst_2_log2e_hi, cst_2_log2e_lo, psub(x, one), num_hi, num_lo);
    // TODO(rmlarsen): Investigate if using the division algorithm by
    // Muller et al. is faster/more accurate.
    // 1 / (x + 1)
    Packet denom_hi, denom_lo;
    doubleword_reciprocal(padd(x, one), denom_hi, denom_lo);
    // r =  c * (x-1) / (x+1),
    Packet r_hi, r_lo;
    twoprod(num_hi, num_lo, denom_hi, denom_lo, r_hi, r_lo);
    // r2 = r * r
    Packet r2_hi, r2_lo;
    twoprod(r_hi, r_lo, r_hi, r_lo, r2_hi, r2_lo);
    // r4 = r2 * r2
    Packet r4_hi, r4_lo;
    twoprod(r2_hi, r2_lo, r2_hi, r2_lo, r4_hi, r4_lo);

    // Evaluate Q(r^2) in working precision. We evaluate it in two parts
    // (even and odd in r^2) to improve instruction level parallelism.
    Packet q_even = pmadd(q12, r4_hi, q8);
    Packet q_odd = pmadd(q10, r4_hi, q6);
    q_even = pmadd(q_even, r4_hi, q4);
    q_odd = pmadd(q_odd, r4_hi, q2);
    q_even = pmadd(q_even, r4_hi, q0);
    Packet q = pmadd(q_odd, r2_hi, q_even);

    // Now evaluate the low order terms of P(x) in double word precision.
    // In the following, due to the increasing magnitude of the coefficients
    // and r being constrained to [-0.5, 0.5] we can use fast_twosum instead
    // of the slower twosum.
    // Q(r^2) * r^2
    Packet p_hi, p_lo;
    twoprod(r2_hi, r2_lo, q, p_hi, p_lo);
    // Q(r^2) * r^2 + C
    Packet p1_hi, p1_lo;
    fast_twosum(C_hi, C_lo, p_hi, p_lo, p1_hi, p1_lo);
    // (Q(r^2) * r^2 + C) * r^2
    Packet p2_hi, p2_lo;
    twoprod(r2_hi, r2_lo, p1_hi, p1_lo, p2_hi, p2_lo);
    // ((Q(r^2) * r^2 + C) * r^2 + 1)
    Packet p3_hi, p3_lo;
    fast_twosum(one, p2_hi, p2_lo, p3_hi, p3_lo);

    // log(z) ~= ((Q(r^2) * r^2 + C) * r^2 + 1) * r
    twoprod(p3_hi, p3_lo, r_hi, r_lo, log2_x_hi, log2_x_lo);
  }
};

// This function computes exp2(x) (i.e. 2**x).
template <typename Scalar>
struct fast_accurate_exp2 {
  template <typename Packet>
  EIGEN_STRONG_INLINE
  Packet operator()(const Packet& x) {
    // TODO(rmlarsen): Add a pexp2 packetop.
    return pexp(pmul(pset1<Packet>(Scalar(EIGEN_LN2)), x));
  }
};

// This specialization uses a faster algorithm to compute exp2(x) for floats
// in [-0.5;0.5] with a relative accuracy of 1 ulp.
// The minimax polynomial used was calculated using the Sollya tool.
// See sollya.org.
template <>
struct fast_accurate_exp2<float> {
  template <typename Packet>
  EIGEN_STRONG_INLINE
  Packet operator()(const Packet& x) {
    // This function approximates exp2(x) by a degree 6 polynomial of the form
    // Q(x) = 1 + x * (C + x * P(x)), where the degree 4 polynomial P(x) is evaluated in
    // single precision, and the remaining steps are evaluated with extra precision using
    // double word arithmetic. C is an extra precise constant stored as a double word.
    //
    // The polynomial coefficients were calculated using Sollya commands:
    // > n = 6;
    // > f = 2^x;
    // > interval = [-0.5;0.5];
    // > p = fpminimax(f,n,[|1,double,single...|],interval,relative,floating);

    const Packet p4 = pset1<Packet>(1.539513905e-4f);
    const Packet p3 = pset1<Packet>(1.340007293e-3f);
    const Packet p2 = pset1<Packet>(9.618283249e-3f);
    const Packet p1 = pset1<Packet>(5.550328270e-2f);
    const Packet p0 = pset1<Packet>(0.2402264923f);

    const Packet C_hi = pset1<Packet>(0.6931471825f);
    const Packet C_lo = pset1<Packet>(2.36836577e-08f);
    const Packet one = pset1<Packet>(1.0f);

    // Evaluate P(x) in working precision.
    // We evaluate even and odd parts of the polynomial separately
    // to gain some instruction level parallelism.
    Packet x2 = pmul(x,x);
    Packet p_even = pmadd(p4, x2, p2);
    Packet p_odd = pmadd(p3, x2, p1);
    p_even = pmadd(p_even, x2, p0);
    Packet p = pmadd(p_odd, x, p_even);

    // Evaluate the remaining terms of Q(x) with extra precision using
    // double word arithmetic.
    Packet p_hi, p_lo;
    // x * p(x)
    twoprod(p, x, p_hi, p_lo);
    // C + x * p(x)
    Packet q1_hi, q1_lo;
    twosum(p_hi, p_lo, C_hi, C_lo, q1_hi, q1_lo);
    // x * (C + x * p(x))
    Packet q2_hi, q2_lo;
    twoprod(q1_hi, q1_lo, x, q2_hi, q2_lo);
    // 1 + x * (C + x * p(x))
    Packet q3_hi, q3_lo;
    // Since |q2_hi| <= sqrt(2)-1 < 1, we can use fast_twosum
    // for adding it to unity here.
    fast_twosum(one, q2_hi, q3_hi, q3_lo);
    return padd(q3_hi, padd(q2_lo, q3_lo));
  }
};

// in [-0.5;0.5] with a relative accuracy of 1 ulp.
// The minimax polynomial used was calculated using the Sollya tool.
// See sollya.org.
template <>
struct fast_accurate_exp2<double> {
  template <typename Packet>
  EIGEN_STRONG_INLINE
  Packet operator()(const Packet& x) {
    // This function approximates exp2(x) by a degree 10 polynomial of the form
    // Q(x) = 1 + x * (C + x * P(x)), where the degree 8 polynomial P(x) is evaluated in
    // single precision, and the remaining steps are evaluated with extra precision using
    // double word arithmetic. C is an extra precise constant stored as a double word.
    //
    // The polynomial coefficients were calculated using Sollya commands:
    // > n = 11;
    // > f = 2^x;
    // > interval = [-0.5;0.5];
    // > p = fpminimax(f,n,[|1,DD,double...|],interval,relative,floating);

    const Packet p9 = pset1<Packet>(4.431642109085495276e-10);
    const Packet p8 = pset1<Packet>(7.073829923303358410e-9);
    const Packet p7 = pset1<Packet>(1.017822306737031311e-7);
    const Packet p6 = pset1<Packet>(1.321543498017646657e-6);
    const Packet p5 = pset1<Packet>(1.525273342728892877e-5);
    const Packet p4 = pset1<Packet>(1.540353045780084423e-4);
    const Packet p3 = pset1<Packet>(1.333355814685869807e-3);
    const Packet p2 = pset1<Packet>(9.618129107593478832e-3);
    const Packet p1 = pset1<Packet>(5.550410866481961247e-2);
    const Packet p0 = pset1<Packet>(0.240226506959101332);
    const Packet C_hi = pset1<Packet>(0.693147180559945286); 
    const Packet C_lo = pset1<Packet>(4.81927865669806721e-17);
    const Packet one = pset1<Packet>(1.0);

    // Evaluate P(x) in working precision.
    // We evaluate even and odd parts of the polynomial separately
    // to gain some instruction level parallelism.
    Packet x2 = pmul(x,x);
    Packet p_even = pmadd(p8, x2, p6);
    Packet p_odd = pmadd(p9, x2, p7);
    p_even = pmadd(p_even, x2, p4);
    p_odd = pmadd(p_odd, x2, p5);
    p_even = pmadd(p_even, x2, p2);
    p_odd = pmadd(p_odd, x2, p3);
    p_even = pmadd(p_even, x2, p0);
    p_odd = pmadd(p_odd, x2, p1);
    Packet p = pmadd(p_odd, x, p_even);

    // Evaluate the remaining terms of Q(x) with extra precision using
    // double word arithmetic.
    Packet p_hi, p_lo;
    // x * p(x)
    twoprod(p, x, p_hi, p_lo);
    // C + x * p(x)
    Packet q1_hi, q1_lo;
    twosum(p_hi, p_lo, C_hi, C_lo, q1_hi, q1_lo);
    // x * (C + x * p(x))
    Packet q2_hi, q2_lo;
    twoprod(q1_hi, q1_lo, x, q2_hi, q2_lo);
    // 1 + x * (C + x * p(x))
    Packet q3_hi, q3_lo;
    // Since |q2_hi| <= sqrt(2)-1 < 1, we can use fast_twosum
    // for adding it to unity here.
    fast_twosum(one, q2_hi, q3_hi, q3_lo);
    return padd(q3_hi, padd(q2_lo, q3_lo));
  }
};

// This function implements the non-trivial case of pow(x,y) where x is
// positive and y is (possibly) non-integer.
// Formally, pow(x,y) = exp2(y * log2(x)), where exp2(x) is shorthand for 2^x.
// TODO(rmlarsen): We should probably add this as a packet up 'ppow', to make it
// easier to specialize or turn off for specific types and/or backends.x
template <typename Packet>
EIGEN_STRONG_INLINE Packet generic_pow_impl(const Packet& x, const Packet& y) {
  typedef typename unpacket_traits<Packet>::type Scalar;
  // Split x into exponent e_x and mantissa m_x.
  Packet e_x;
  Packet m_x = pfrexp(x, e_x);

  // Adjust m_x to lie in [1/sqrt(2):sqrt(2)] to minimize absolute error in log2(m_x).
  EIGEN_CONSTEXPR Scalar sqrt_half = Scalar(0.70710678118654752440);
  const Packet m_x_scale_mask = pcmp_lt(m_x, pset1<Packet>(sqrt_half));
  m_x = pselect(m_x_scale_mask, pmul(pset1<Packet>(Scalar(2)), m_x), m_x);
  e_x = pselect(m_x_scale_mask, psub(e_x, pset1<Packet>(Scalar(1))), e_x);

  // Compute log2(m_x) with 6 extra bits of accuracy.
  Packet rx_hi, rx_lo;
  accurate_log2<Scalar>()(m_x, rx_hi, rx_lo);

  // Compute the two terms {y * e_x, y * r_x} in f = y * log2(x) with doubled
  // precision using double word arithmetic.
  Packet f1_hi, f1_lo, f2_hi, f2_lo;
  twoprod(e_x, y, f1_hi, f1_lo);
  twoprod(rx_hi, rx_lo, y, f2_hi, f2_lo);
  // Sum the two terms in f using double word arithmetic. We know
  // that |e_x| > |log2(m_x)|, except for the case where e_x==0.
  // This means that we can use fast_twosum(f1,f2).
  // In the case e_x == 0, e_x * y = f1 = 0, so we don't lose any
  // accuracy by violating the assumption of fast_twosum, because
  // it's a no-op.
  Packet f_hi, f_lo;
  fast_twosum(f1_hi, f1_lo, f2_hi, f2_lo, f_hi, f_lo);

  // Split f into integer and fractional parts.
  Packet n_z, r_z;
  absolute_split(f_hi, n_z, r_z);
  r_z = padd(r_z, f_lo);
  Packet n_r;
  absolute_split(r_z, n_r, r_z);
  n_z = padd(n_z, n_r);

  // We now have an accurate split of f = n_z + r_z and can compute
  //   x^y = 2**{n_z + r_z) = exp2(r_z) * 2**{n_z}.
  // Since r_z is in [-0.5;0.5], we compute the first factor to high accuracy
  // using a specialized algorithm. Multiplication by the second factor can
  // be done exactly using pldexp(), since it is an integer power of 2.
  const Packet e_r = fast_accurate_exp2<Scalar>()(r_z);
  return pldexp(e_r, n_z);
}

// Generic implementation of pow(x,y).
template<typename Packet>
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
EIGEN_UNUSED
Packet generic_pow(const Packet& x, const Packet& y) {
  typedef typename unpacket_traits<Packet>::type Scalar;

  const Packet cst_pos_inf = pset1<Packet>(NumTraits<Scalar>::infinity());
  const Packet cst_zero = pset1<Packet>(Scalar(0));
  const Packet cst_one = pset1<Packet>(Scalar(1));
  const Packet cst_nan = pset1<Packet>(NumTraits<Scalar>::quiet_NaN());

  const Packet abs_x = pabs(x);
  // Predicates for sign and magnitude of x.
  const Packet x_is_zero = pcmp_eq(x, cst_zero);
  const Packet x_is_neg = pcmp_lt(x, cst_zero);
  const Packet abs_x_is_inf = pcmp_eq(abs_x, cst_pos_inf);
  const Packet abs_x_is_one =  pcmp_eq(abs_x, cst_one);
  const Packet abs_x_is_gt_one = pcmp_lt(cst_one, abs_x);
  const Packet abs_x_is_lt_one = pcmp_lt(abs_x, cst_one);
  const Packet x_is_one =  pandnot(abs_x_is_one, x_is_neg);
  const Packet x_is_neg_one =  pand(abs_x_is_one, x_is_neg);
  const Packet x_is_nan = pandnot(ptrue(x), pcmp_eq(x, x));

  // Predicates for sign and magnitude of y.
  const Packet y_is_one = pcmp_eq(y, cst_one);
  const Packet y_is_zero = pcmp_eq(y, cst_zero);
  const Packet y_is_neg = pcmp_lt(y, cst_zero);
  const Packet y_is_pos = pandnot(ptrue(y), por(y_is_zero, y_is_neg));
  const Packet y_is_nan = pandnot(ptrue(y), pcmp_eq(y, y));
  const Packet abs_y_is_inf = pcmp_eq(pabs(y), cst_pos_inf);
  EIGEN_CONSTEXPR Scalar huge_exponent =
      (NumTraits<Scalar>::max_exponent() * Scalar(EIGEN_LN2)) /
       NumTraits<Scalar>::epsilon();
  const Packet abs_y_is_huge = pcmp_le(pset1<Packet>(huge_exponent), pabs(y));

  // Predicates for whether y is integer and/or even.
  const Packet y_is_int = pcmp_eq(pfloor(y), y);
  const Packet y_div_2 = pmul(y, pset1<Packet>(Scalar(0.5)));
  const Packet y_is_even = pcmp_eq(pround(y_div_2), y_div_2);

  // Predicates encoding special cases for the value of pow(x,y)
  const Packet invalid_negative_x = pandnot(pandnot(pandnot(x_is_neg, abs_x_is_inf),
                                                    y_is_int),
                                            abs_y_is_inf);
  const Packet pow_is_one = por(por(x_is_one, y_is_zero),
                                pand(x_is_neg_one,
                                     por(abs_y_is_inf, pandnot(y_is_even, invalid_negative_x))));
  const Packet pow_is_nan = por(invalid_negative_x, por(x_is_nan, y_is_nan));
  const Packet pow_is_zero = por(por(por(pand(x_is_zero, y_is_pos),
                                         pand(abs_x_is_inf, y_is_neg)),
                                     pand(pand(abs_x_is_lt_one, abs_y_is_huge),
                                          y_is_pos)),
                                 pand(pand(abs_x_is_gt_one, abs_y_is_huge),
                                      y_is_neg));
  const Packet pow_is_inf = por(por(por(pand(x_is_zero, y_is_neg),
                                        pand(abs_x_is_inf, y_is_pos)),
                                    pand(pand(abs_x_is_lt_one, abs_y_is_huge),
                                         y_is_neg)),
                                pand(pand(abs_x_is_gt_one, abs_y_is_huge),
                                     y_is_pos));

  // General computation of pow(x,y) for positive x or negative x and integer y.
  const Packet negate_pow_abs = pandnot(x_is_neg, y_is_even);
  const Packet pow_abs = generic_pow_impl(abs_x, y);
  return pselect(y_is_one, x,
                 pselect(pow_is_one, cst_one,
                         pselect(pow_is_nan, cst_nan,
                                 pselect(pow_is_inf, cst_pos_inf,
                                         pselect(pow_is_zero, cst_zero,
                                                 pselect(negate_pow_abs, pnegate(pow_abs), pow_abs))))));
}



/* polevl (modified for Eigen)
 *
 *      Evaluate polynomial
 *
 *
 *
 * SYNOPSIS:
 *
 * int N;
 * Scalar x, y, coef[N+1];
 *
 * y = polevl<decltype(x), N>( x, coef);
 *
 *
 *
 * DESCRIPTION:
 *
 * Evaluates polynomial of degree N:
 *
 *                     2          N
 * y  =  C  + C x + C x  +...+ C x
 *        0    1     2          N
 *
 * Coefficients are stored in reverse order:
 *
 * coef[0] = C  , ..., coef[N] = C  .
 *            N                   0
 *
 *  The function p1evl() assumes that coef[N] = 1.0 and is
 * omitted from the array.  Its calling arguments are
 * otherwise the same as polevl().
 *
 *
 * The Eigen implementation is templatized.  For best speed, store
 * coef as a const array (constexpr), e.g.
 *
 * const double coef[] = {1.0, 2.0, 3.0, ...};
 *
 */
template <typename Packet, int N>
struct ppolevl {
  static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet run(const Packet& x, const typename unpacket_traits<Packet>::type coeff[]) {
    EIGEN_STATIC_ASSERT((N > 0), YOU_MADE_A_PROGRAMMING_MISTAKE);
    return pmadd(ppolevl<Packet, N-1>::run(x, coeff), x, pset1<Packet>(coeff[N]));
  }
};

template <typename Packet>
struct ppolevl<Packet, 0> {
  static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet run(const Packet& x, const typename unpacket_traits<Packet>::type coeff[]) {
    EIGEN_UNUSED_VARIABLE(x);
    return pset1<Packet>(coeff[0]);
  }
};

/* chbevl (modified for Eigen)
 *
 *     Evaluate Chebyshev series
 *
 *
 *
 * SYNOPSIS:
 *
 * int N;
 * Scalar x, y, coef[N], chebevl();
 *
 * y = chbevl( x, coef, N );
 *
 *
 *
 * DESCRIPTION:
 *
 * Evaluates the series
 *
 *        N-1
 *         - '
 *  y  =   >   coef[i] T (x/2)
 *         -            i
 *        i=0
 *
 * of Chebyshev polynomials Ti at argument x/2.
 *
 * Coefficients are stored in reverse order, i.e. the zero
 * order term is last in the array.  Note N is the number of
 * coefficients, not the order.
 *
 * If coefficients are for the interval a to b, x must
 * have been transformed to x -> 2(2x - b - a)/(b-a) before
 * entering the routine.  This maps x from (a, b) to (-1, 1),
 * over which the Chebyshev polynomials are defined.
 *
 * If the coefficients are for the inverted interval, in
 * which (a, b) is mapped to (1/b, 1/a), the transformation
 * required is x -> 2(2ab/x - b - a)/(b-a).  If b is infinity,
 * this becomes x -> 4a/x - 1.
 *
 *
 *
 * SPEED:
 *
 * Taking advantage of the recurrence properties of the
 * Chebyshev polynomials, the routine requires one more
 * addition per loop than evaluating a nested polynomial of
 * the same degree.
 *
 */

template <typename Packet, int N>
struct pchebevl {
  EIGEN_DEVICE_FUNC
  static EIGEN_STRONG_INLINE Packet run(Packet x, const typename unpacket_traits<Packet>::type coef[]) {
    typedef typename unpacket_traits<Packet>::type Scalar;
    Packet b0 = pset1<Packet>(coef[0]);
    Packet b1 = pset1<Packet>(static_cast<Scalar>(0.f));
    Packet b2;

    for (int i = 1; i < N; i++) {
      b2 = b1;
      b1 = b0;
      b0 = psub(pmadd(x, b1, pset1<Packet>(coef[i])), b2);
    }

    return pmul(pset1<Packet>(static_cast<Scalar>(0.5f)), psub(b0, b2));
  }
};

} // end namespace internal
} // end namespace Eigen

#endif // EIGEN_ARCH_GENERIC_PACKET_MATH_FUNCTIONS_H