// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2012 Chen-Pang He // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "matrix_functions.h" template void test2dRotation(double tol) { Matrix A, B, C; T angle, c, s; A << 0, 1, -1, 0; for (int i = 0; i <= 20; i++) { angle = pow(10, (i-10) / 5.); c = std::cos(angle); s = std::sin(angle); B << c, s, -s, c; C = A.pow(std::ldexp(angle, 1) / M_PI); std::cout << "test2dRotation: i = " << i << " error powerm = " << relerr(C, B) << '\n'; VERIFY(C.isApprox(B, T(tol))); } } template void test2dHyperbolicRotation(double tol) { Matrix,2,2> A, B, C; T angle, ch = std::cosh(1); std::complex ish(0, std::sinh(1)); A << ch, ish, -ish, ch; for (int i = 0; i <= 20; i++) { angle = std::ldexp(T(i-10), -1); ch = std::cosh(angle); ish = std::complex(0, std::sinh(angle)); B << ch, ish, -ish, ch; C = A.pow(angle); std::cout << "test2dHyperbolicRotation: i = " << i << " error powerm = " << relerr(C, B) << '\n'; VERIFY(C.isApprox(B, T(tol))); } } template void testExponentLaws(const MatrixType& m, double tol) { typedef typename MatrixType::RealScalar RealScalar; MatrixType m1, m2, m3, m4, m5; RealScalar x, y; for (int i = 0; i < g_repeat; i++) { generateTestMatrix::run(m1, m.rows()); x = internal::random(); y = internal::random(); m2 = m1.pow(x); m3 = m1.pow(y); m4 = m1.pow(x + y); m5.noalias() = m2 * m3; std::cout << "testExponentLaws: error powerm = " << relerr(m4, m5); VERIFY(m4.isApprox(m5, RealScalar(tol))); if (!NumTraits::IsComplex) { m4 = m1.pow(x * y); m5 = m2.pow(y); std::cout << " " << relerr(m4, m5); VERIFY(m4.isApprox(m5, RealScalar(tol))); } m4 = (std::abs(x) * m1).pow(y); m5 = std::pow(std::abs(x), y) * m3; std::cout << " " << relerr(m4, m5) << '\n'; VERIFY(m4.isApprox(m5, RealScalar(tol))); } } template void testMatrixVectorProduct(const MatrixType& m, const VectorType& v, double tol) { typedef typename MatrixType::RealScalar RealScalar; MatrixType m1; VectorType v1, v2, v3; RealScalar p; for (int i = 0; i < g_repeat; i++) { generateTestMatrix::run(m1, m.rows()); v1 = VectorType::Random(v.rows(), v.cols()); p = internal::random(); v2.noalias() = m1.pow(p).eval() * v1; v1 = m1.pow(p) * v1; std::cout << "testMatrixVectorProduct: error powerm = " << relerr(v2, v1) << '\n'; VERIFY(v2.isApprox(v1, RealScalar(tol))); } } template void testAliasing(const MatrixType& m) { typedef typename MatrixType::RealScalar RealScalar; MatrixType m1, m2; RealScalar p; for (int i = 0; i < g_repeat; i++) { generateTestMatrix::run(m1, m.rows()); p = internal::random(); m2 = m1.pow(p); m1 = m1.pow(p); VERIFY(m1 == m2); } } void test_matrix_power() { CALL_SUBTEST_2(test2dRotation(1e-13)); CALL_SUBTEST_1(test2dRotation(2e-5)); // was 1e-5, relaxed for clang 2.8 / linux / x86-64 CALL_SUBTEST_9(test2dRotation(1e-13)); CALL_SUBTEST_2(test2dHyperbolicRotation(1e-14)); CALL_SUBTEST_1(test2dHyperbolicRotation(1e-5)); CALL_SUBTEST_9(test2dHyperbolicRotation(1e-14)); CALL_SUBTEST_2(testExponentLaws(Matrix2d(), 1e-13)); CALL_SUBTEST_7(testExponentLaws(Matrix(), 1e-13)); CALL_SUBTEST_3(testExponentLaws(Matrix4cd(), 1e-13)); CALL_SUBTEST_4(testExponentLaws(MatrixXd(8,8), 1e-13)); CALL_SUBTEST_1(testExponentLaws(Matrix2f(), 1e-4)); CALL_SUBTEST_5(testExponentLaws(Matrix3cf(), 1e-4)); CALL_SUBTEST_8(testExponentLaws(Matrix4f(), 1e-4)); CALL_SUBTEST_6(testExponentLaws(MatrixXf(8,8), 1e-4)); CALL_SUBTEST_2(testMatrixVectorProduct(Matrix2d(), Vector2d(), 1e-13)); CALL_SUBTEST_7(testMatrixVectorProduct(Matrix(), Vector3d(), 1e-13)); CALL_SUBTEST_3(testMatrixVectorProduct(Matrix4cd(), Vector4cd(), 1e-13)); CALL_SUBTEST_4(testMatrixVectorProduct(MatrixXd(8,8), MatrixXd(8,2), 1e-13)); CALL_SUBTEST_1(testMatrixVectorProduct(Matrix2f(), Vector2f(), 1e-4)); CALL_SUBTEST_5(testMatrixVectorProduct(Matrix3cf(), Vector3cf(), 1e-4)); CALL_SUBTEST_8(testMatrixVectorProduct(Matrix4f(), Vector4f(), 1e-4)); CALL_SUBTEST_6(testMatrixVectorProduct(MatrixXf(8,8), VectorXf(8), 1e-4)); CALL_SUBTEST_9(testMatrixVectorProduct(Matrix(7,7), Matrix(), 1e-13)); CALL_SUBTEST_7(testAliasing(Matrix())); CALL_SUBTEST_3(testAliasing(Matrix4cd())); CALL_SUBTEST_4(testAliasing(MatrixXd(8,8))); CALL_SUBTEST_5(testAliasing(Matrix3cf())); CALL_SUBTEST_6(testAliasing(MatrixXf(8,8))); }