// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2016 // Mehdi Goli Codeplay Software Ltd. // Ralph Potter Codeplay Software Ltd. // Luke Iwanski Codeplay Software Ltd. // Contact: // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #define EIGEN_TEST_NO_LONGDOUBLE #define EIGEN_TEST_NO_COMPLEX #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t #define EIGEN_USE_SYCL #include #include #include #include "main.h" #include using Eigen::array; using Eigen::SyclDevice; using Eigen::Tensor; using Eigen::TensorMap; template static void test_simple_striding(const Eigen::SyclDevice& sycl_device) { Eigen::array tensor_dims = {{2,3,5,7}}; Eigen::array stride_dims = {{1,1,3,3}}; Tensor tensor(tensor_dims); Tensor no_stride(tensor_dims); Tensor stride(stride_dims); std::size_t tensor_bytes = tensor.size() * sizeof(DataType); std::size_t no_stride_bytes = no_stride.size() * sizeof(DataType); std::size_t stride_bytes = stride.size() * sizeof(DataType); DataType * d_tensor = static_cast(sycl_device.allocate(tensor_bytes)); DataType * d_no_stride = static_cast(sycl_device.allocate(no_stride_bytes)); DataType * d_stride = static_cast(sycl_device.allocate(stride_bytes)); Eigen::TensorMap > gpu_tensor(d_tensor, tensor_dims); Eigen::TensorMap > gpu_no_stride(d_no_stride, tensor_dims); Eigen::TensorMap > gpu_stride(d_stride, stride_dims); tensor.setRandom(); array strides; strides[0] = 1; strides[1] = 1; strides[2] = 1; strides[3] = 1; sycl_device.memcpyHostToDevice(d_tensor, tensor.data(), tensor_bytes); gpu_no_stride.device(sycl_device)=gpu_tensor.stride(strides); sycl_device.memcpyDeviceToHost(no_stride.data(), d_no_stride, no_stride_bytes); //no_stride = tensor.stride(strides); VERIFY_IS_EQUAL(no_stride.dimension(0), 2); VERIFY_IS_EQUAL(no_stride.dimension(1), 3); VERIFY_IS_EQUAL(no_stride.dimension(2), 5); VERIFY_IS_EQUAL(no_stride.dimension(3), 7); for (IndexType i = 0; i < 2; ++i) { for (IndexType j = 0; j < 3; ++j) { for (IndexType k = 0; k < 5; ++k) { for (IndexType l = 0; l < 7; ++l) { VERIFY_IS_EQUAL(tensor(i,j,k,l), no_stride(i,j,k,l)); } } } } strides[0] = 2; strides[1] = 4; strides[2] = 2; strides[3] = 3; //Tensor stride; // stride = tensor.stride(strides); gpu_stride.device(sycl_device)=gpu_tensor.stride(strides); sycl_device.memcpyDeviceToHost(stride.data(), d_stride, stride_bytes); VERIFY_IS_EQUAL(stride.dimension(0), 1); VERIFY_IS_EQUAL(stride.dimension(1), 1); VERIFY_IS_EQUAL(stride.dimension(2), 3); VERIFY_IS_EQUAL(stride.dimension(3), 3); for (IndexType i = 0; i < 1; ++i) { for (IndexType j = 0; j < 1; ++j) { for (IndexType k = 0; k < 3; ++k) { for (IndexType l = 0; l < 3; ++l) { VERIFY_IS_EQUAL(tensor(2*i,4*j,2*k,3*l), stride(i,j,k,l)); } } } } sycl_device.deallocate(d_tensor); sycl_device.deallocate(d_no_stride); sycl_device.deallocate(d_stride); } template static void test_striding_as_lvalue(const Eigen::SyclDevice& sycl_device) { Eigen::array tensor_dims = {{2,3,5,7}}; Eigen::array stride_dims = {{3,12,10,21}}; Tensor tensor(tensor_dims); Tensor no_stride(stride_dims); Tensor stride(stride_dims); std::size_t tensor_bytes = tensor.size() * sizeof(DataType); std::size_t no_stride_bytes = no_stride.size() * sizeof(DataType); std::size_t stride_bytes = stride.size() * sizeof(DataType); DataType * d_tensor = static_cast(sycl_device.allocate(tensor_bytes)); DataType * d_no_stride = static_cast(sycl_device.allocate(no_stride_bytes)); DataType * d_stride = static_cast(sycl_device.allocate(stride_bytes)); Eigen::TensorMap > gpu_tensor(d_tensor, tensor_dims); Eigen::TensorMap > gpu_no_stride(d_no_stride, stride_dims); Eigen::TensorMap > gpu_stride(d_stride, stride_dims); //Tensor tensor(2,3,5,7); tensor.setRandom(); array strides; strides[0] = 2; strides[1] = 4; strides[2] = 2; strides[3] = 3; // Tensor result(3, 12, 10, 21); // result.stride(strides) = tensor; sycl_device.memcpyHostToDevice(d_tensor, tensor.data(), tensor_bytes); gpu_stride.stride(strides).device(sycl_device)=gpu_tensor; sycl_device.memcpyDeviceToHost(stride.data(), d_stride, stride_bytes); for (IndexType i = 0; i < 2; ++i) { for (IndexType j = 0; j < 3; ++j) { for (IndexType k = 0; k < 5; ++k) { for (IndexType l = 0; l < 7; ++l) { VERIFY_IS_EQUAL(tensor(i,j,k,l), stride(2*i,4*j,2*k,3*l)); } } } } array no_strides; no_strides[0] = 1; no_strides[1] = 1; no_strides[2] = 1; no_strides[3] = 1; // Tensor result2(3, 12, 10, 21); // result2.stride(strides) = tensor.stride(no_strides); gpu_no_stride.stride(strides).device(sycl_device)=gpu_tensor.stride(no_strides); sycl_device.memcpyDeviceToHost(no_stride.data(), d_no_stride, no_stride_bytes); for (IndexType i = 0; i < 2; ++i) { for (IndexType j = 0; j < 3; ++j) { for (IndexType k = 0; k < 5; ++k) { for (IndexType l = 0; l < 7; ++l) { VERIFY_IS_EQUAL(tensor(i,j,k,l), no_stride(2*i,4*j,2*k,3*l)); } } } } sycl_device.deallocate(d_tensor); sycl_device.deallocate(d_no_stride); sycl_device.deallocate(d_stride); } template void tensorStridingPerDevice(Dev_selector& s){ QueueInterface queueInterface(s); auto sycl_device=Eigen::SyclDevice(&queueInterface); test_simple_striding(sycl_device); test_simple_striding(sycl_device); test_striding_as_lvalue(sycl_device); test_striding_as_lvalue(sycl_device); } EIGEN_DECLARE_TEST(cxx11_tensor_striding_sycl) { for (const auto& device :Eigen::get_sycl_supported_devices()) { CALL_SUBTEST(tensorStridingPerDevice(device)); } }