// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2015 // Mehdi Goli Codeplay Software Ltd. // Ralph Potter Codeplay Software Ltd. // Luke Iwanski Codeplay Software Ltd. // Contact: // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #define EIGEN_TEST_NO_LONGDOUBLE #define EIGEN_TEST_NO_COMPLEX #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t #define EIGEN_USE_SYCL #include "main.h" #include template static void test_simple_reverse(const Eigen::SyclDevice& sycl_device) { IndexType dim1 = 2; IndexType dim2 = 3; IndexType dim3 = 5; IndexType dim4 = 7; array tensorRange = {{dim1, dim2, dim3, dim4}}; Tensor tensor(tensorRange); Tensor reversed_tensor(tensorRange); tensor.setRandom(); array dim_rev; dim_rev[0] = false; dim_rev[1] = true; dim_rev[2] = true; dim_rev[3] = false; DataType* gpu_in_data = static_cast( sycl_device.allocate(tensor.dimensions().TotalSize() * sizeof(DataType))); DataType* gpu_out_data = static_cast(sycl_device.allocate( reversed_tensor.dimensions().TotalSize() * sizeof(DataType))); TensorMap > in_gpu(gpu_in_data, tensorRange); TensorMap > out_gpu(gpu_out_data, tensorRange); sycl_device.memcpyHostToDevice( gpu_in_data, tensor.data(), (tensor.dimensions().TotalSize()) * sizeof(DataType)); out_gpu.device(sycl_device) = in_gpu.reverse(dim_rev); sycl_device.memcpyDeviceToHost( reversed_tensor.data(), gpu_out_data, reversed_tensor.dimensions().TotalSize() * sizeof(DataType)); // Check that the CPU and GPU reductions return the same result. for (IndexType i = 0; i < 2; ++i) { for (IndexType j = 0; j < 3; ++j) { for (IndexType k = 0; k < 5; ++k) { for (IndexType l = 0; l < 7; ++l) { VERIFY_IS_EQUAL(tensor(i, j, k, l), reversed_tensor(i, 2 - j, 4 - k, l)); } } } } dim_rev[0] = true; dim_rev[1] = false; dim_rev[2] = false; dim_rev[3] = false; out_gpu.device(sycl_device) = in_gpu.reverse(dim_rev); sycl_device.memcpyDeviceToHost( reversed_tensor.data(), gpu_out_data, reversed_tensor.dimensions().TotalSize() * sizeof(DataType)); for (IndexType i = 0; i < 2; ++i) { for (IndexType j = 0; j < 3; ++j) { for (IndexType k = 0; k < 5; ++k) { for (IndexType l = 0; l < 7; ++l) { VERIFY_IS_EQUAL(tensor(i, j, k, l), reversed_tensor(1 - i, j, k, l)); } } } } dim_rev[0] = true; dim_rev[1] = false; dim_rev[2] = false; dim_rev[3] = true; out_gpu.device(sycl_device) = in_gpu.reverse(dim_rev); sycl_device.memcpyDeviceToHost( reversed_tensor.data(), gpu_out_data, reversed_tensor.dimensions().TotalSize() * sizeof(DataType)); for (IndexType i = 0; i < 2; ++i) { for (IndexType j = 0; j < 3; ++j) { for (IndexType k = 0; k < 5; ++k) { for (IndexType l = 0; l < 7; ++l) { VERIFY_IS_EQUAL(tensor(i, j, k, l), reversed_tensor(1 - i, j, k, 6 - l)); } } } } sycl_device.deallocate(gpu_in_data); sycl_device.deallocate(gpu_out_data); } template static void test_expr_reverse(const Eigen::SyclDevice& sycl_device, bool LValue) { IndexType dim1 = 2; IndexType dim2 = 3; IndexType dim3 = 5; IndexType dim4 = 7; array tensorRange = {{dim1, dim2, dim3, dim4}}; Tensor tensor(tensorRange); Tensor expected(tensorRange); Tensor result(tensorRange); tensor.setRandom(); array dim_rev; dim_rev[0] = false; dim_rev[1] = true; dim_rev[2] = false; dim_rev[3] = true; DataType* gpu_in_data = static_cast( sycl_device.allocate(tensor.dimensions().TotalSize() * sizeof(DataType))); DataType* gpu_out_data_expected = static_cast(sycl_device.allocate( expected.dimensions().TotalSize() * sizeof(DataType))); DataType* gpu_out_data_result = static_cast( sycl_device.allocate(result.dimensions().TotalSize() * sizeof(DataType))); TensorMap > in_gpu(gpu_in_data, tensorRange); TensorMap > out_gpu_expected( gpu_out_data_expected, tensorRange); TensorMap > out_gpu_result( gpu_out_data_result, tensorRange); sycl_device.memcpyHostToDevice( gpu_in_data, tensor.data(), (tensor.dimensions().TotalSize()) * sizeof(DataType)); if (LValue) { out_gpu_expected.reverse(dim_rev).device(sycl_device) = in_gpu; } else { out_gpu_expected.device(sycl_device) = in_gpu.reverse(dim_rev); } sycl_device.memcpyDeviceToHost( expected.data(), gpu_out_data_expected, expected.dimensions().TotalSize() * sizeof(DataType)); array src_slice_dim; src_slice_dim[0] = 2; src_slice_dim[1] = 3; src_slice_dim[2] = 1; src_slice_dim[3] = 7; array src_slice_start; src_slice_start[0] = 0; src_slice_start[1] = 0; src_slice_start[2] = 0; src_slice_start[3] = 0; array dst_slice_dim = src_slice_dim; array dst_slice_start = src_slice_start; for (IndexType i = 0; i < 5; ++i) { if (LValue) { out_gpu_result.slice(dst_slice_start, dst_slice_dim) .reverse(dim_rev) .device(sycl_device) = in_gpu.slice(src_slice_start, src_slice_dim); } else { out_gpu_result.slice(dst_slice_start, dst_slice_dim).device(sycl_device) = in_gpu.slice(src_slice_start, src_slice_dim).reverse(dim_rev); } src_slice_start[2] += 1; dst_slice_start[2] += 1; } sycl_device.memcpyDeviceToHost( result.data(), gpu_out_data_result, result.dimensions().TotalSize() * sizeof(DataType)); for (IndexType i = 0; i < expected.dimension(0); ++i) { for (IndexType j = 0; j < expected.dimension(1); ++j) { for (IndexType k = 0; k < expected.dimension(2); ++k) { for (IndexType l = 0; l < expected.dimension(3); ++l) { VERIFY_IS_EQUAL(result(i, j, k, l), expected(i, j, k, l)); } } } } dst_slice_start[2] = 0; result.setRandom(); sycl_device.memcpyHostToDevice( gpu_out_data_result, result.data(), (result.dimensions().TotalSize()) * sizeof(DataType)); for (IndexType i = 0; i < 5; ++i) { if (LValue) { out_gpu_result.slice(dst_slice_start, dst_slice_dim) .reverse(dim_rev) .device(sycl_device) = in_gpu.slice(dst_slice_start, dst_slice_dim); } else { out_gpu_result.slice(dst_slice_start, dst_slice_dim).device(sycl_device) = in_gpu.reverse(dim_rev).slice(dst_slice_start, dst_slice_dim); } dst_slice_start[2] += 1; } sycl_device.memcpyDeviceToHost( result.data(), gpu_out_data_result, result.dimensions().TotalSize() * sizeof(DataType)); for (IndexType i = 0; i < expected.dimension(0); ++i) { for (IndexType j = 0; j < expected.dimension(1); ++j) { for (IndexType k = 0; k < expected.dimension(2); ++k) { for (IndexType l = 0; l < expected.dimension(3); ++l) { VERIFY_IS_EQUAL(result(i, j, k, l), expected(i, j, k, l)); } } } } } template void sycl_reverse_test_per_device(const cl::sycl::device& d) { QueueInterface queueInterface(d); auto sycl_device = Eigen::SyclDevice(&queueInterface); test_simple_reverse(sycl_device); test_simple_reverse(sycl_device); test_expr_reverse(sycl_device, false); test_expr_reverse(sycl_device, false); test_expr_reverse(sycl_device, true); test_expr_reverse(sycl_device, true); } EIGEN_DECLARE_TEST(cxx11_tensor_reverse_sycl) { for (const auto& device : Eigen::get_sycl_supported_devices()) { std::cout << "Running on " << device.get_info() << std::endl; CALL_SUBTEST_1(sycl_reverse_test_per_device(device)); CALL_SUBTEST_2(sycl_reverse_test_per_device(device)); CALL_SUBTEST_3(sycl_reverse_test_per_device(device)); #ifdef EIGEN_SYCL_DOUBLE_SUPPORT CALL_SUBTEST_4(sycl_reverse_test_per_device(device)); #endif CALL_SUBTEST_5(sycl_reverse_test_per_device(device)); } }