// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2016 // Mehdi Goli Codeplay Software Ltd. // Ralph Potter Codeplay Software Ltd. // Luke Iwanski Codeplay Software Ltd. // Contact: // Benoit Steiner // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #define EIGEN_TEST_NO_LONGDOUBLE #define EIGEN_TEST_NO_COMPLEX #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t #define EIGEN_USE_SYCL #include "main.h" #include using Eigen::Tensor; template static void test_simple_patch_sycl(const Eigen::SyclDevice& sycl_device){ IndexType sizeDim1 = 2; IndexType sizeDim2 = 3; IndexType sizeDim3 = 5; IndexType sizeDim4 = 7; array tensorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim4}}; array patchTensorRange; if (DataLayout == ColMajor) { patchTensorRange = {{1, 1, 1, 1, sizeDim1*sizeDim2*sizeDim3*sizeDim4}}; }else{ patchTensorRange = {{sizeDim1*sizeDim2*sizeDim3*sizeDim4,1, 1, 1, 1}}; } Tensor tensor(tensorRange); Tensor no_patch(patchTensorRange); tensor.setRandom(); array patch_dims; patch_dims[0] = 1; patch_dims[1] = 1; patch_dims[2] = 1; patch_dims[3] = 1; const size_t tensorBuffSize =tensor.size()*sizeof(DataType); size_t patchTensorBuffSize =no_patch.size()*sizeof(DataType); DataType* gpu_data_tensor = static_cast(sycl_device.allocate(tensorBuffSize)); DataType* gpu_data_no_patch = static_cast(sycl_device.allocate(patchTensorBuffSize)); TensorMap> gpu_tensor(gpu_data_tensor, tensorRange); TensorMap> gpu_no_patch(gpu_data_no_patch, patchTensorRange); sycl_device.memcpyHostToDevice(gpu_data_tensor, tensor.data(), tensorBuffSize); gpu_no_patch.device(sycl_device)=gpu_tensor.extract_patches(patch_dims); sycl_device.memcpyDeviceToHost(no_patch.data(), gpu_data_no_patch, patchTensorBuffSize); if (DataLayout == ColMajor) { VERIFY_IS_EQUAL(no_patch.dimension(0), 1); VERIFY_IS_EQUAL(no_patch.dimension(1), 1); VERIFY_IS_EQUAL(no_patch.dimension(2), 1); VERIFY_IS_EQUAL(no_patch.dimension(3), 1); VERIFY_IS_EQUAL(no_patch.dimension(4), tensor.size()); } else { VERIFY_IS_EQUAL(no_patch.dimension(0), tensor.size()); VERIFY_IS_EQUAL(no_patch.dimension(1), 1); VERIFY_IS_EQUAL(no_patch.dimension(2), 1); VERIFY_IS_EQUAL(no_patch.dimension(3), 1); VERIFY_IS_EQUAL(no_patch.dimension(4), 1); } for (int i = 0; i < tensor.size(); ++i) { VERIFY_IS_EQUAL(tensor.data()[i], no_patch.data()[i]); } patch_dims[0] = 2; patch_dims[1] = 3; patch_dims[2] = 5; patch_dims[3] = 7; if (DataLayout == ColMajor) { patchTensorRange = {{sizeDim1,sizeDim2,sizeDim3,sizeDim4,1}}; }else{ patchTensorRange = {{1,sizeDim1,sizeDim2,sizeDim3,sizeDim4}}; } Tensor single_patch(patchTensorRange); patchTensorBuffSize =single_patch.size()*sizeof(DataType); DataType* gpu_data_single_patch = static_cast(sycl_device.allocate(patchTensorBuffSize)); TensorMap> gpu_single_patch(gpu_data_single_patch, patchTensorRange); gpu_single_patch.device(sycl_device)=gpu_tensor.extract_patches(patch_dims); sycl_device.memcpyDeviceToHost(single_patch.data(), gpu_data_single_patch, patchTensorBuffSize); if (DataLayout == ColMajor) { VERIFY_IS_EQUAL(single_patch.dimension(0), 2); VERIFY_IS_EQUAL(single_patch.dimension(1), 3); VERIFY_IS_EQUAL(single_patch.dimension(2), 5); VERIFY_IS_EQUAL(single_patch.dimension(3), 7); VERIFY_IS_EQUAL(single_patch.dimension(4), 1); } else { VERIFY_IS_EQUAL(single_patch.dimension(0), 1); VERIFY_IS_EQUAL(single_patch.dimension(1), 2); VERIFY_IS_EQUAL(single_patch.dimension(2), 3); VERIFY_IS_EQUAL(single_patch.dimension(3), 5); VERIFY_IS_EQUAL(single_patch.dimension(4), 7); } for (int i = 0; i < tensor.size(); ++i) { VERIFY_IS_EQUAL(tensor.data()[i], single_patch.data()[i]); } patch_dims[0] = 1; patch_dims[1] = 2; patch_dims[2] = 2; patch_dims[3] = 1; if (DataLayout == ColMajor) { patchTensorRange = {{1,2,2,1,2*2*4*7}}; }else{ patchTensorRange = {{2*2*4*7, 1, 2,2,1}}; } Tensor twod_patch(patchTensorRange); patchTensorBuffSize =twod_patch.size()*sizeof(DataType); DataType* gpu_data_twod_patch = static_cast(sycl_device.allocate(patchTensorBuffSize)); TensorMap> gpu_twod_patch(gpu_data_twod_patch, patchTensorRange); gpu_twod_patch.device(sycl_device)=gpu_tensor.extract_patches(patch_dims); sycl_device.memcpyDeviceToHost(twod_patch.data(), gpu_data_twod_patch, patchTensorBuffSize); if (DataLayout == ColMajor) { VERIFY_IS_EQUAL(twod_patch.dimension(0), 1); VERIFY_IS_EQUAL(twod_patch.dimension(1), 2); VERIFY_IS_EQUAL(twod_patch.dimension(2), 2); VERIFY_IS_EQUAL(twod_patch.dimension(3), 1); VERIFY_IS_EQUAL(twod_patch.dimension(4), 2*2*4*7); } else { VERIFY_IS_EQUAL(twod_patch.dimension(0), 2*2*4*7); VERIFY_IS_EQUAL(twod_patch.dimension(1), 1); VERIFY_IS_EQUAL(twod_patch.dimension(2), 2); VERIFY_IS_EQUAL(twod_patch.dimension(3), 2); VERIFY_IS_EQUAL(twod_patch.dimension(4), 1); } for (int i = 0; i < 2; ++i) { for (int j = 0; j < 2; ++j) { for (int k = 0; k < 4; ++k) { for (int l = 0; l < 7; ++l) { int patch_loc; if (DataLayout == ColMajor) { patch_loc = i + 2 * (j + 2 * (k + 4 * l)); } else { patch_loc = l + 7 * (k + 4 * (j + 2 * i)); } for (int x = 0; x < 2; ++x) { for (int y = 0; y < 2; ++y) { if (DataLayout == ColMajor) { VERIFY_IS_EQUAL(tensor(i,j+x,k+y,l), twod_patch(0,x,y,0,patch_loc)); } else { VERIFY_IS_EQUAL(tensor(i,j+x,k+y,l), twod_patch(patch_loc,0,x,y,0)); } } } } } } } patch_dims[0] = 1; patch_dims[1] = 2; patch_dims[2] = 3; patch_dims[3] = 5; if (DataLayout == ColMajor) { patchTensorRange = {{1,2,3,5,2*2*3*3}}; }else{ patchTensorRange = {{2*2*3*3, 1, 2,3,5}}; } Tensor threed_patch(patchTensorRange); patchTensorBuffSize =threed_patch.size()*sizeof(DataType); DataType* gpu_data_threed_patch = static_cast(sycl_device.allocate(patchTensorBuffSize)); TensorMap> gpu_threed_patch(gpu_data_threed_patch, patchTensorRange); gpu_threed_patch.device(sycl_device)=gpu_tensor.extract_patches(patch_dims); sycl_device.memcpyDeviceToHost(threed_patch.data(), gpu_data_threed_patch, patchTensorBuffSize); if (DataLayout == ColMajor) { VERIFY_IS_EQUAL(threed_patch.dimension(0), 1); VERIFY_IS_EQUAL(threed_patch.dimension(1), 2); VERIFY_IS_EQUAL(threed_patch.dimension(2), 3); VERIFY_IS_EQUAL(threed_patch.dimension(3), 5); VERIFY_IS_EQUAL(threed_patch.dimension(4), 2*2*3*3); } else { VERIFY_IS_EQUAL(threed_patch.dimension(0), 2*2*3*3); VERIFY_IS_EQUAL(threed_patch.dimension(1), 1); VERIFY_IS_EQUAL(threed_patch.dimension(2), 2); VERIFY_IS_EQUAL(threed_patch.dimension(3), 3); VERIFY_IS_EQUAL(threed_patch.dimension(4), 5); } for (int i = 0; i < 2; ++i) { for (int j = 0; j < 2; ++j) { for (int k = 0; k < 3; ++k) { for (int l = 0; l < 3; ++l) { int patch_loc; if (DataLayout == ColMajor) { patch_loc = i + 2 * (j + 2 * (k + 3 * l)); } else { patch_loc = l + 3 * (k + 3 * (j + 2 * i)); } for (int x = 0; x < 2; ++x) { for (int y = 0; y < 3; ++y) { for (int z = 0; z < 5; ++z) { if (DataLayout == ColMajor) { VERIFY_IS_EQUAL(tensor(i,j+x,k+y,l+z), threed_patch(0,x,y,z,patch_loc)); } else { VERIFY_IS_EQUAL(tensor(i,j+x,k+y,l+z), threed_patch(patch_loc,0,x,y,z)); } } } } } } } } sycl_device.deallocate(gpu_data_tensor); sycl_device.deallocate(gpu_data_no_patch); sycl_device.deallocate(gpu_data_single_patch); sycl_device.deallocate(gpu_data_twod_patch); sycl_device.deallocate(gpu_data_threed_patch); } template void sycl_tensor_patch_test_per_device(dev_Selector s){ QueueInterface queueInterface(s); auto sycl_device = Eigen::SyclDevice(&queueInterface); test_simple_patch_sycl(sycl_device); test_simple_patch_sycl(sycl_device); } EIGEN_DECLARE_TEST(cxx11_tensor_patch_sycl) { for (const auto& device :Eigen::get_sycl_supported_devices()) { CALL_SUBTEST(sycl_tensor_patch_test_per_device(device)); } }