// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Benoit Steiner // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "main.h" #include using Eigen::Tensor; using Eigen::RowMajor; static void test_0d() { Tensor scalar1; Tensor scalar2; TensorMap > scalar3(scalar1.data()); TensorMap > scalar4(scalar2.data()); scalar1() = 7; scalar2() = 13; VERIFY_IS_EQUAL(scalar1.rank(), 0); VERIFY_IS_EQUAL(scalar1.size(), 1); VERIFY_IS_EQUAL(scalar3(), 7); VERIFY_IS_EQUAL(scalar4(), 13); } static void test_1d() { Tensor vec1(6); Tensor vec2(6); TensorMap > vec3(vec1.data(), 6); TensorMap > vec4(vec2.data(), 6); vec1(0) = 4; vec2(0) = 0; vec1(1) = 8; vec2(1) = 1; vec1(2) = 15; vec2(2) = 2; vec1(3) = 16; vec2(3) = 3; vec1(4) = 23; vec2(4) = 4; vec1(5) = 42; vec2(5) = 5; VERIFY_IS_EQUAL(vec1.rank(), 1); VERIFY_IS_EQUAL(vec1.size(), 6); VERIFY_IS_EQUAL(vec1.dimension(0), 6); VERIFY_IS_EQUAL(vec3(0), 4); VERIFY_IS_EQUAL(vec3(1), 8); VERIFY_IS_EQUAL(vec3(2), 15); VERIFY_IS_EQUAL(vec3(3), 16); VERIFY_IS_EQUAL(vec3(4), 23); VERIFY_IS_EQUAL(vec3(5), 42); VERIFY_IS_EQUAL(vec4(0), 0); VERIFY_IS_EQUAL(vec4(1), 1); VERIFY_IS_EQUAL(vec4(2), 2); VERIFY_IS_EQUAL(vec4(3), 3); VERIFY_IS_EQUAL(vec4(4), 4); VERIFY_IS_EQUAL(vec4(5), 5); } static void test_2d() { Tensor mat1(2,3); Tensor mat2(2,3); mat1(0,0) = 0; mat1(0,1) = 1; mat1(0,2) = 2; mat1(1,0) = 3; mat1(1,1) = 4; mat1(1,2) = 5; mat2(0,0) = 0; mat2(0,1) = 1; mat2(0,2) = 2; mat2(1,0) = 3; mat2(1,1) = 4; mat2(1,2) = 5; TensorMap > mat3(mat1.data(), 2, 3); TensorMap > mat4(mat2.data(), 2, 3); VERIFY_IS_EQUAL(mat3.rank(), 2); VERIFY_IS_EQUAL(mat3.size(), 6); VERIFY_IS_EQUAL(mat3.dimension(0), 2); VERIFY_IS_EQUAL(mat3.dimension(1), 3); VERIFY_IS_EQUAL(mat4.rank(), 2); VERIFY_IS_EQUAL(mat4.size(), 6); VERIFY_IS_EQUAL(mat4.dimension(0), 2); VERIFY_IS_EQUAL(mat4.dimension(1), 3); VERIFY_IS_EQUAL(mat3(0,0), 0); VERIFY_IS_EQUAL(mat3(0,1), 1); VERIFY_IS_EQUAL(mat3(0,2), 2); VERIFY_IS_EQUAL(mat3(1,0), 3); VERIFY_IS_EQUAL(mat3(1,1), 4); VERIFY_IS_EQUAL(mat3(1,2), 5); VERIFY_IS_EQUAL(mat4(0,0), 0); VERIFY_IS_EQUAL(mat4(0,1), 1); VERIFY_IS_EQUAL(mat4(0,2), 2); VERIFY_IS_EQUAL(mat4(1,0), 3); VERIFY_IS_EQUAL(mat4(1,1), 4); VERIFY_IS_EQUAL(mat4(1,2), 5); } static void test_3d() { Tensor mat1(2,3,7); Tensor mat2(2,3,7); int val = 0; for (int i = 0; i < 2; ++i) { for (int j = 0; j < 3; ++j) { for (int k = 0; k < 7; ++k) { mat1(i,j,k) = val; mat2(i,j,k) = val; val++; } } } TensorMap > mat3(mat1.data(), 2, 3, 7); TensorMap > mat4(mat2.data(), 2, 3, 7); VERIFY_IS_EQUAL(mat3.rank(), 3); VERIFY_IS_EQUAL(mat3.size(), 2*3*7); VERIFY_IS_EQUAL(mat3.dimension(0), 2); VERIFY_IS_EQUAL(mat3.dimension(1), 3); VERIFY_IS_EQUAL(mat3.dimension(2), 7); VERIFY_IS_EQUAL(mat4.rank(), 3); VERIFY_IS_EQUAL(mat4.size(), 2*3*7); VERIFY_IS_EQUAL(mat4.dimension(0), 2); VERIFY_IS_EQUAL(mat4.dimension(1), 3); VERIFY_IS_EQUAL(mat4.dimension(2), 7); val = 0; for (int i = 0; i < 2; ++i) { for (int j = 0; j < 3; ++j) { for (int k = 0; k < 7; ++k) { VERIFY_IS_EQUAL(mat3(i,j,k), val); VERIFY_IS_EQUAL(mat4(i,j,k), val); val++; } } } } static void test_from_tensor() { Tensor mat1(2,3,7); Tensor mat2(2,3,7); int val = 0; for (int i = 0; i < 2; ++i) { for (int j = 0; j < 3; ++j) { for (int k = 0; k < 7; ++k) { mat1(i,j,k) = val; mat2(i,j,k) = val; val++; } } } TensorMap > mat3(mat1); TensorMap > mat4(mat2); VERIFY_IS_EQUAL(mat3.rank(), 3); VERIFY_IS_EQUAL(mat3.size(), 2*3*7); VERIFY_IS_EQUAL(mat3.dimension(0), 2); VERIFY_IS_EQUAL(mat3.dimension(1), 3); VERIFY_IS_EQUAL(mat3.dimension(2), 7); VERIFY_IS_EQUAL(mat4.rank(), 3); VERIFY_IS_EQUAL(mat4.size(), 2*3*7); VERIFY_IS_EQUAL(mat4.dimension(0), 2); VERIFY_IS_EQUAL(mat4.dimension(1), 3); VERIFY_IS_EQUAL(mat4.dimension(2), 7); val = 0; for (int i = 0; i < 2; ++i) { for (int j = 0; j < 3; ++j) { for (int k = 0; k < 7; ++k) { VERIFY_IS_EQUAL(mat3(i,j,k), val); VERIFY_IS_EQUAL(mat4(i,j,k), val); val++; } } } TensorFixedSize > mat5; val = 0; for (int i = 0; i < 2; ++i) { for (int j = 0; j < 3; ++j) { for (int k = 0; k < 7; ++k) { array coords; coords[0] = i; coords[1] = j; coords[2] = k; mat5(coords) = val; val++; } } } TensorMap > > mat6(mat5); VERIFY_IS_EQUAL(mat6.rank(), 3); VERIFY_IS_EQUAL(mat6.size(), 2*3*7); VERIFY_IS_EQUAL(mat6.dimension(0), 2); VERIFY_IS_EQUAL(mat6.dimension(1), 3); VERIFY_IS_EQUAL(mat6.dimension(2), 7); val = 0; for (int i = 0; i < 2; ++i) { for (int j = 0; j < 3; ++j) { for (int k = 0; k < 7; ++k) { VERIFY_IS_EQUAL(mat6(i,j,k), val); val++; } } } } static int f(const TensorMap >& tensor) { // Size<0> empty; EIGEN_STATIC_ASSERT((internal::array_size >::value == 0), YOU_MADE_A_PROGRAMMING_MISTAKE); EIGEN_STATIC_ASSERT((internal::array_size >::value == 0), YOU_MADE_A_PROGRAMMING_MISTAKE); Tensor result = tensor.sum(); return result(); } static void test_casting() { Tensor tensor(2,3,7); int val = 0; for (int i = 0; i < 2; ++i) { for (int j = 0; j < 3; ++j) { for (int k = 0; k < 7; ++k) { tensor(i,j,k) = val; val++; } } } TensorMap > map(tensor); int sum1 = f(map); int sum2 = f(tensor); VERIFY_IS_EQUAL(sum1, sum2); VERIFY_IS_EQUAL(sum1, 861); } template static const T& add_const(T& value) { return value; } static void test_0d_const_tensor() { Tensor scalar1; Tensor scalar2; TensorMap > scalar3(add_const(scalar1).data()); TensorMap > scalar4(add_const(scalar2).data()); scalar1() = 7; scalar2() = 13; VERIFY_IS_EQUAL(scalar1.rank(), 0); VERIFY_IS_EQUAL(scalar1.size(), 1); VERIFY_IS_EQUAL(scalar3(), 7); VERIFY_IS_EQUAL(scalar4(), 13); } static void test_0d_const_tensor_map() { Tensor scalar1; Tensor scalar2; const TensorMap > scalar3(scalar1.data()); const TensorMap > scalar4(scalar2.data()); // Although TensorMap is constant, we still can write to the underlying // storage, because we map over non-constant Tensor. scalar3() = 7; scalar4() = 13; VERIFY_IS_EQUAL(scalar1(), 7); VERIFY_IS_EQUAL(scalar2(), 13); // Pointer to the underlying storage is also non-const. scalar3.data()[0] = 8; scalar4.data()[0] = 14; VERIFY_IS_EQUAL(scalar1(), 8); VERIFY_IS_EQUAL(scalar2(), 14); } EIGEN_DECLARE_TEST(cxx11_tensor_map) { CALL_SUBTEST(test_0d()); CALL_SUBTEST(test_1d()); CALL_SUBTEST(test_2d()); CALL_SUBTEST(test_3d()); CALL_SUBTEST(test_from_tensor()); CALL_SUBTEST(test_casting()); CALL_SUBTEST(test_0d_const_tensor()); CALL_SUBTEST(test_0d_const_tensor_map()); }