// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014-2015 Benoit Steiner // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "main.h" #include void test_signed_32bit() { // Divide by one const Eigen::internal::TensorIntDivisor div_by_one(1); for (int32_t j = 0; j < 25000; ++j) { const int32_t fast_div = j / div_by_one; const int32_t slow_div = j / 1; VERIFY_IS_EQUAL(fast_div, slow_div); } // Standard divide by 2 or more for (int32_t i = 2; i < 25000; ++i) { const Eigen::internal::TensorIntDivisor div(i); for (int32_t j = 0; j < 25000; ++j) { const int32_t fast_div = j / div; const int32_t slow_div = j / i; VERIFY_IS_EQUAL(fast_div, slow_div); } } // Optimized divide by 2 or more for (int32_t i = 2; i < 25000; ++i) { const Eigen::internal::TensorIntDivisor div(i); for (int32_t j = 0; j < 25000; ++j) { const int32_t fast_div = j / div; const int32_t slow_div = j / i; VERIFY_IS_EQUAL(fast_div, slow_div); } } } void test_unsigned_32bit() { for (uint32_t i = 1; i < 25000; ++i) { const Eigen::internal::TensorIntDivisor div(i); for (uint32_t j = 0; j < 25000; ++j) { const uint32_t fast_div = j / div; const uint32_t slow_div = j / i; VERIFY_IS_EQUAL(fast_div, slow_div); } } } void test_signed_64bit() { for (int64_t i = 1; i < 25000; ++i) { const Eigen::internal::TensorIntDivisor div(i); for (int64_t j = 0; j < 25000; ++j) { const int64_t fast_div = j / div; const int64_t slow_div = j / i; VERIFY_IS_EQUAL(fast_div, slow_div); } } } void test_unsigned_64bit() { for (uint64_t i = 1; i < 25000; ++i) { const Eigen::internal::TensorIntDivisor div(i); for (uint64_t j = 0; j < 25000; ++j) { const uint64_t fast_div = j / div; const uint64_t slow_div = j / i; VERIFY_IS_EQUAL(fast_div, slow_div); } } } void test_powers_32bit() { for (int expon = 1; expon < 31; expon++) { int32_t div = (1 << expon); for (int num_expon = 0; num_expon < 32; num_expon++) { int32_t start_num = (1 << num_expon) - 100; int32_t end_num = (1 << num_expon) + 100; if (start_num < 0) start_num = 0; for (int32_t num = start_num; num < end_num; num++) { Eigen::internal::TensorIntDivisor divider = Eigen::internal::TensorIntDivisor(div); int32_t result = num/div; int32_t result_op = divider.divide(num); VERIFY_IS_EQUAL(result_op, result); } } } } void test_powers_64bit() { for (int expon = 0; expon < 63; expon++) { int64_t div = (1ull << expon); for (int num_expon = 0; num_expon < 63; num_expon++) { int64_t start_num = (1ull << num_expon) - 10; int64_t end_num = (1ull << num_expon) + 10; if (start_num < 0) start_num = 0; for (int64_t num = start_num; num < end_num; num++) { Eigen::internal::TensorIntDivisor divider(div); int64_t result = num/div; int64_t result_op = divider.divide(num); VERIFY_IS_EQUAL(result_op, result); } } } } void test_specific() { // A particular combination that was previously failing int64_t div = 209715200; int64_t num = 3238002688ll; Eigen::internal::TensorIntDivisor divider(div); int64_t result = num/div; int64_t result_op = divider.divide(num); VERIFY_IS_EQUAL(result, result_op); } EIGEN_DECLARE_TEST(cxx11_tensor_intdiv) { CALL_SUBTEST_1(test_signed_32bit()); CALL_SUBTEST_2(test_unsigned_32bit()); CALL_SUBTEST_3(test_signed_64bit()); CALL_SUBTEST_4(test_unsigned_64bit()); CALL_SUBTEST_5(test_powers_32bit()); CALL_SUBTEST_6(test_powers_64bit()); CALL_SUBTEST_7(test_specific()); }